Publications by    
Page 2 of 2:  Prev << 1 2    (42 Items)

26.  Very Long Wavelength GaAs/GaInP Quantum Well Infrared Photodetectors
C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
SPIE Conference, San Jose, CA, -- February 12, 1997
We demonstrate long wavelength quantum well infrared photodetectors with GaAs quantum wells and GaInP barriers grown using gas-source molecular beam epitaxy. Wafers were grown with varying well widths. The optimum well width was 75 angstrom, which resulted in a detection peak at 13 μm and a cutoff wavelength of 15 μm. Dark current measurements of the samples with 15 μm cutoff wavelength show low dark current densities. The dark current characteristics have been investigated as a function of temperature and electron density in the well and compared to a model which takes into account thermionic emission and thermally assisted tunneling. The model is used to extract a saturation velocity of 1.5 x 105 cm/s for electrons. The photoelectron lifetime before recapture has been deduced from this carrier velocity and photoconductive gain measurements. The lifetime is found to be approximately 5 ps. Preliminary focal plane array imaging is demonstrated. reprint
 
27.  Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection
C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown
Applied Physics Letters 70 (3)-- January 20, 1997
We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. reprint
 
28.  Infrared Imaging Arrays Using Advanced III-V Materials and technology
M. Razeghi, J.D. Kim, C. Jelen, S. Slivken, E. Michel, H. Mohseni, J.J. Lee, J. Wojkowski, K.S. Kim, H.I. Jeon, and J. X
IEEE Proceedings, Advanced Workshop on Frontiers in Electronics (WOFE), Tenerife, Spain;-- January 6, 1997
Photodetectors operating in the 3-5 and 8-12 μm atmospheric windows are of great importance for applications in infrared (IR) thermal imaging. HgCdTe has been the dominant material system for these applications. However, it suffers from instability and non-uniformity problems over large areas due to high Hg vapor pressure during the material, growth. There has been a lot of interest in the use of heteroepitaxially grown Sb-based alloys, its strained layer superlattices, and GaAs based quantum wells as alternatives to MCT. This interest has been driven by the advanced material growth and processing technology available for the III-V material system reprint
 
29.  Gas Source Molecular Beam Epitaxy Growth and Characterization of Ga0.51In0.49P/InxGa1-xAs/GaAs Modulation-doped Field-effect Transistor Structures
C. Besikci, Y. Civan, S. Ozder, O. Sen, C. Jelen, S. Slivken, and M. Razeghi
Semiconductor Science Technology 12-- January 1, 1997
Lattice-matched Ga0.51In0.49P/GaAs and strained Ga0.51In0.49P/InxGa1−xAs/GaAs (0.1 ≤ x ≤ 0.25) modulation-doped field-effect transistor structures were grown by gas source molecular beam epitaxy by using Si as dopant. Detailed electrical characterization results are presented. The Ga0.5In0.49P/In0.25Ga0.75As/GaAs sample yielded dark two-dimensional electron gas densities of 3.75 x 1012 cm-2 (300 K) and 2.3 x 1012 cm-2 (77 K) which are comparable to the highest sheet electron densities reported in AlGaAs/InGaAs/GaAs and InAlAs/InGaAs/InP modulation-doped heterostructures. Persistent photoconductivity was observed in the strained samples only. A 0.797 eV deep level has been detected in the undoped GaInP layers of the structures. Another level, with DLTS peak height dependent on the filling pulse width, has been detected at the interface of the strained samples. Based on the DLTS and Hall effect measurement results, this level, which seems to be the origin of persistent photoconductivity, can be attributed to the strain relaxation related defects. reprint
 
30.  GaAs/GaInP Quantum Well Intersubband Photodetectors for Focal Plane Array Infrared Imaging
C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
-- December 2, 1996
 
31.  III-V interband and intraband far-infrared detectors
M. Razeghi, C. Jelen, S. Slivken and J. Hoff
-- September 23, 1996
 
32.  Comparison of Gain and Threshold Current Density for InGaAsP/GaAs λ = 808 nm) Lasers with Different Quantum-Well Thickness
H.J. Yi, J. Diaz, I. Eliashevich, G. Lukas, S. Kim, D. Wu, M. Erdtmann, C. Jelen, S. Slivken, L.J. Wang, and M. Razeghi
Journal of Applied Physics 79 (11)-- July 1, 1996
We investigated the quantum‐size effects of quantum well (QW) on gain and threshold current density for InGaAsP/GaAs (λ=808 nm) laser diodes. In this work, a comparison is made of lasers with different QW thickness while keeping the optical confinement factors constant. We found that the threshold current density and differential efficiency were not affected by narrowing the QW thickness. The theoretical model taking into account the mixing of the valence bands and momentum relaxation for InGaAsP/GaAs lasers with spontaneous emission (optically pumped) measurement shows that the absence of difference between these structures can be attributed to the high relaxation rate. reprint
 
33.  Optical Absorption and Photoresponse in fully Quaternary p-type Quantum Well Detectors
J. Hoff, C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996
Acceptor doped, non-strained aluminum-free Quantum Well Intersubband Photodetectors lattice matched to GaAs with Ga0.79In0.21As0.59P0.41 wells and Ga0.62In0.38As0.22P0.78 barriers have been demonstrated on semi-insulating GaAs substrates. These devices which operate at normal incidence demonstrate a unique spectral response which extends from approximately 2 μm up to 10 μm. To explain such a broad spectral shape, a detailed theoretical analysis based on the 8 x 8 Kane Hamiltonian was necessary to probe all aspect of optical absorption. The results of this analysis revealed that spectral shape results from the influence of the Spin Split-off band on the band structure and the optical matrix. reprint
 
34.  High-Temperature Reliability of Aluminum-free 980nm and 808nm Laser Diodes
J. Diaz, H. Yi, C. Jelen, S. Kim, S. Slivken, I. Eliashevich, M. Erdtmann, D. Wu, G. Lukas, and M. Razeghi
-- January 1, 1996
 
35.  MOCVD Growth of Ga1-xInxAsyP1-y-GaAs Quantum Structures
M. Razeghi, J. Hoff, M. Erdtmann, S. Kim, D. Wu, E. Kaas, C. Jelen, S. Slivken, I. Eliashevich, J. Diaz, E. Bigan, G.J. Brown, S. Javadpour
-- January 1, 1996
 
36.  Molecular Beam Epitaxial Growth of High Quality InSb for p-i-n Photodetectors
G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi
Journal of Vacuum Science and Technology B, 13 (2)-- March 1, 1995
The InSb infrared photodetectors grown heteroepitaxially on Si substrates by molecular beam epitaxy (MBE) are reported. Excellent InSb material quality is obtained on 3-inch Si substrates (with a GaAs predeposition) as confirmed by structural, optical, and electrical analysis. InSb infrared photodetectors on Si substrates that can operate from 77 K to room temperature have been demonstrated. The peak voltage-responsitivity at 4 μm is about 1.0×103 V/W and the corresponding Johnson-noise-limited detectivity is calculated to be 2.8×1010 cm·Hz½/W. This is the first important stage in developing InSb detector arrays or monolithic focal plane arrays (FPAs) on silicon. The development of this technology could provide a challenge to traditional hybrid FPA's in the future. reprint
 
37.  Molecular beam epitaxial growth of InSb p-i-n photodetectors on GaAs and Si
E. Michel, R. Peters, S. Slivken, C. Jelen, P. Bove, J. Xu, I. Ferguson, and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995
High quality InSb has been grown by Molecular Beam Epitaxy and optimized using Reflection High Energy Electron Diffraction. A 4.8 micrometers InSb layer grown on GaAs at a growth temperature of 395 degree(s)C and a III/V incorporation ratio of 1:1.2 had an X-ray rocking curve FWHM of 158 arcsec and a Hall mobility of 92300 cm2V-1s-1 at 77 K, the best reported to date for InSb nucleated directly onto GaAs. InSb p-i-n structures of 5.8 micrometers grown under the same conditions demonstrated a X-ray Full Width at Half Maximum of 101 arcsec and 131 arcsec for GaAs and Si substrates, respectively, and exhibited excellent uniformity of +/- 3 arcsec over a 3' substrate. Prototype InSb p-i-n detectors on Si have been fabricated and have demonstrated photovoltaic response at 6.5 micrometers up to 200 K. These p-i-n detectors have also exhibited the highest D* for a device grown onto Si. reprint
 
38.  Analysis of Spectral Response in p-type GaAs/GaInP QWIPs
J. Hoff, C. Jelen, S. Slivken, E. Bigan, M. Razeghi, and G.J. Brown
-- January 1, 1995
 
39.  Intersubband hole absorption in GaAs-GaInP Quantum Wells grown by Gas Source Molecular Beam Epitaxy
J. Hoff, C. Jelen, S. Slivken, E. Michel, O. Duchemin, E. Bigan, and M. Razeghi with G. Brown and S.M. Hegde (Wright Laboratory)
Applied Physics Letters 65 (9)-- August 29, 1994
P-doped GaAs‐GaInP quantum wells have been grown on GaAs substrate by gas source molecular beam epitaxy. Structural quality has been evidenced by x-ray diffraction. A narrow low-temperature photoluminescence full width at half‐maximum has been measured. Strong hole intersubband absorption has been observed at 9 μm, and its dependence on light polarization has been investigated. reprint
 
40.  Characterization of high quality GaInP/GaAs superlattices grown on GaAs and Si substrates by gas source molecular beam epitaxy
C. Jelen, S. Slivken, X.G. He, and M. Razeghi and S. Shastry
Journal of Vacuum Science and Technology B 12 (2)-- March 1, 1994
We report an analysis of the heteroepitaxial interfaces in high quality GaInP–GaAs superlattices grown simultaneously on GaAs and Si substrates by gas source molecular beam epitaxy. These two superlattices have been studied using high resolution x-ray diffraction measurements. Sharp superlattice satellites, with very little broadening, are observed within a 6° range for the sample on GaAs. Photoluminescence peaks with full widths at half-maximums of 5 and 7 meV are obtained at 4 K for samples with 58 Å wells on GaAs and Si, respectively. Room temperature exciton absorption is observed in the photovoltage measurements for a superlattice grown on Si substrate. The thicknesses determined by x-ray analysis are consistent with those obtained by a Kronig–Penny model fitting of the photovoltage spectroscopy. reprint
 
41.  GaInAsP/InP 1.35 μm Double Heterostructure Laser Grown on Silicon Substrate by Metalorganic Chemical Vapor Deposition
K. Mobarhan, C. Jelen, E. Kolev, and M. Razeghi
Journal of Applied Physics 74 (1)-- July 1, 1993
A 1.35 μm GaInAsP/InP double heterostructure laser has been grown on a Si substrate using low‐pressure metalorganic chemical vapor deposition. This was done without the use of a superlattice layer or a very thick InP buffer layer, which are used to prevent the dislocations from spreading into the active layer. Pulsed operation with output power of over 200 mW per facet was achieved at room temperature for broad area lasers with 20 μm width and 170 μm cavity length. The threshold current density of a 350 μm cavity length device was 9.8 kA/cm². The characteristic temperature was 66 K. reprint
 
42.  Growth of InSb/GaAs layers on YIG-coated GGG substrate
C. Jelen, S. Charriere, M. Razeghi, and V.J. Leppert
-- January 1, 1993
 

Page 2 of 2:  Prev << 1 2    (42 Items)