Publications by    
Page 1  (10 Items)

1.  High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends
M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park
Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003
In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. reprint
 
2.  High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends
M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park
Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001
In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. reprint
 
3.  High performance quantum cascade lasers (~11 μm) operating at high temperature (T>= 425K)
A. Tahraoui, A. Matlis, S. Slivken, J. Diaz, and M. Razeghi
Applied Physics Letters 78 (4)-- January 22, 2001
We report record-low threshold current density and high output power for λ ∼ 11 μm Al0.48In0.52As/Ga0.47In0.53As quantum cascade lasers operating up to 425 K. The threshold current density is 1.1, 3.83, and 7.08 kA/cm² at 80, 300, and 425 K, respectively, for 5 μs pulses at a 200 Hz repetition rate. The cavity length is 3 mm with a stripe width of 20 μm. The maximum peak output power per facet is 1 W at 80 K, 0.5 W at 300 K, and more than 75 mW at 425 K. The characteristic temperature of these lasers is 174 K between 80 and 300 K and 218 K in the range of 300–425 K. reprint
 
4.  High Performance Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
M. Razeghi, S. Slivken, A. Tahraoui and A. Matlis
SPIE Conference, San Jose, CA, -- January 22, 2001
Recent improvements in quantum cascade laser technology have led to a number of very impressive results. This paper is a brief summary of the technological development and state-of- the-art performance of quantum cascade lasers produced at the Center for Quantum Devices. Laser design will be discussed, as well as experimental details of device fabrication. Room temperature QCL operation has been reported for lasers emitting between 5 - 11 μm, with 9 - 11 μm lasers operating up to 425 K. We also demonstrate record room temperature peak output powers at 9 and 11 μm(2.5 W and 1 W respectively) as well as record low 80 K threshold current densities (250 A/cm²) for some laser designs. Finally, some of the current limitations to laser efficiency are mentioned, as well as a means to combat them. reprint
 
5.  Low-threshold and high power (~9.0 μm) quantum cascade lasers operating at room temperature
A. Matlis, S. Slivken, A. Tahraoui, K.J. Luo, J. Diaz, Z. Wu, A. Rybaltowski, C. Jelen, and M. Razeghi
Applied Physics Letters 77 (12)-- September 18, 2000
We report a low threshold current density and high power for λ ∼ 9 μm AlInAs/GaInAs quantum cascade lasers operating at room temperature. The threshold current density is 1.95 kA/cm² at 300 K and 0.61 kA/cm² at 80 K for 5 μs pulses at 200 Hz repetition rate. The peak output power is 700 mW at room temperature and 1.3 W at 80 K per two facets for cavity length is 3 mm with a stripe width of 20 μm. The characteristic temperature T0 is 185 °C. The slope efficiency is 450 and 800 mW/A at 300 and 80 K, respectively. In continuous wave operation, the output power is more than 150 mW at 80 K and 25 mW at 140 K. This high performance was achieved by improving the material growth and processing technology. reprint
 
6.  High-responsivity GaInAs/InP Quantum Well Infrared Photodetectors Grown by Low-Pressure Metalorganic Chemical Vapor Deposition
M. Erdtmann, A. Matlis, C. Jelen, M. Razeghi, and G. Brown
SPIE Conference, San Jose, CA, -- January 26, 2000
We have studied the dependence of the well doping density in n-type GaInAs/InP quantum well IR photodetectors (QWIPs) grown by low-pressure metalorganic chemical vapor deposition. Three identical GaInAs/InP QWIP structures were grown with well sheet carrier densities of 1x1011 cm-2, 3x1011 cm-2, and 10x1011 cm-2; all three samples had very sharp spectral response at λ equals 9.0 μm. We find that there is a large sensitivity of responsivity, dark current, noise current, and detectivity with the well doping density. Measurements revealed that the lowest-doped samples had an extremely low responsivity relative to the doping concentration while the highest-doped sample had an excessively high dark current relative to doping. The middle-doped sample yielded the optimal results. This QWIP had a responsivity of 33.2 A/W and operated with a detectivity of 3.5x1010 cm·Hz½·W-1 at a bias of 0.75 V and temperature of 80 K. This responsivity is the highest value reported for any QWIP in the (lambda) equals 8-9 &mus;m range. Analysis is also presented explaining the dependence of the measured QWIP parameters to well doping density. reprint
 
7.  Growth and Optimization of GaInAsP/InP Material System for Quantum Well Infrared Photodetector Applications
M. Erdtmann, J. Jiang, A. Matlis, A. Tahraoui, C. Jelen, M. Razeghi, and G. Brown
SPIE Conference, San Jose, CA, -- January 26, 2000
Multi-quantum well structures of GaxIn1-xAsyP1-y were grown by metalorganic chemical vapor deposition for the fabrication of quantum well IR photodetectors. The thickness and composition of the wells was determined by high-resolution x-ray diffraction and photoluminescence experiments. The intersubband absorption spectrum of the Ga0.47In0.53As/InP, Ga0.38In0.62As0.80P0.20 (1.55 μm)/InP, and Ga0.27In0.73As0.57P0.43 (1.3 μm))/InP quantum wells are found to have cutoff wavelengths of 9.3 μm, 10.7 micrometers , and 14.2 μm respectively. These wavelengths are consistent with a conduction band offset to bandgap ratio of approximately 0.32. Facet coupled illumination responsivity and detectivity are reported for each composition. reprint
 
8.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. reprint
 
9.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. reprint
 
10.  Low Threshold Quantum Cascade Lasers Grown by GSMBE
M. Razeghi, S. Slivken, A. Matlis, A. Rybaltowski, C. Jelen, and J. Diaz
LEOS Newsletter 12 (6)-- December 1, 1998
 

Page 1  (10 Items)