Page 1 of 27:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (673 Items)

135.  

-- November 30, 1999
 
64.  nBn extended short-wavelength infrared focal plane array
ARASH DEHZANGI, ABBAS HADDADI, ROMAIN CHEVALLIER, YIYUN ZHANG, AND MANIJEH RAZEGHI
Optics Letters Vol. 43, Issue 3, pp. 591-594-- February 1, 2018 ...[Visit Journal]
An extended short-wavelength nBn InAs/GaSb/AlSb type-II superlattice-based infrared focal plane array imager was demonstrated. A newly developed InAs0.10Sb0.90∕GaSb superlattice design was used as the large-bandgap electron barrier in this photodetector. The large band gap electron-barrier design in this nBn photodetector architecture leads to the device having lower dark current densities. A new bi-layer etch-stop scheme using a combination of InAs0.91Sb0.09 bulk and AlAs0.1Sb0.9∕GaSb superlattice layers was introduced to allow complete substrate removal and a shorter wavelength cut-on. Test pixels exhibit 100% cutoff wavelengths of ∼2.30 and ∼2.48 μm at 150 and 300 K, respectively. The devices achieve saturated quantum efficiency values of 59.7% and 63.8% at 150 and 300 K, respectively, under backside illumination and without any antireflection coating.At 150 K, photodetectors exhibit dark current density of 8.75 × 10−8 A∕cm² under −400 mV applied bias, providing specific detectivity of 2.82 × 1012 cm · Hz1∕2∕W at 1.78 μm. At 300 K, the dark current density reaches 4.75 × 10−2 A∕cm² under −200 mV bias, providing a specific detectivity of 8.55 × 109 cm · Hz1∕2∕W 1.78 μm. [reprint (PDF)]
 
42.  Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Arash Dehzangi, Jiakai Li and Manijeh Razeghi
Light: Science & Applications volume 10, Article number: 17 (2021) https://doi.org/10.1038/s41377-020-00453-x ...[Visit Journal]
The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) photodetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy, remote sensing, optical communication, and thermal and medical imaging. Here, we report the design, growth, and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/e cut-off wavelength of the device is 8.0 µm. At 77 K, unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10−7 A/cm2. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 1013 cm Hz1/2/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach. [reprint (PDF)]
 
35.  

-- November 30, 1999
 
30.  High Performance Planar Antimony-Based Superlattice Photodetectors Using Zinc Diffusion Grown by MBE
Jiakai Li, R. K. Saroj, Steven Slivken, V. H. Nguyen, Gail Brown and Manijeh Razeghi
Photonics 2022, 9, 664 ...[Visit Journal]
In this letter, we report a mid-wavelength infrared (MWIR) planar photodetector based on InAs/InAsSb type-II superlattices (T2SLs) that has a cut-off wavelength of 4.3 um at 77 K. The superlattice for the device was grown by molecular beam epitaxy while the planar device structure was achieved by Zinc diffusion process in a metal–organic chemical vapor deposition reactor. At 77 K, the peak responsivity and the corresponding quantum efficiency had the value of 1.42 A/W and 48% respectively at 3.7 um under -20 mV for the MWIR planar photodetector. At 77 K, the MWIR planar photodetector exhibits a dark current density of 2.0E5 A/cm^2 and the R0A value of ~3.0E2 Ohm cm^2 under -20 mV, which yielded a specific detectivity of 4.0E11 cm Hz^(1/2)/W at 3.7 um. At 150 K, the planar device showed a dark current density of 6.4E-5 A/cm^2 and a quantum efficiency of 49% at ~3.7 um under -20 mV, which yielded a specific detectivity of 2.0E11 cm Hz^(1/2)/W. [reprint (PDF)]
 
25.  Light People: Professor Manijeh Razeghi
Hui Wang, and Cun Yu
Light Sci Appl 13, 164 ...[Visit Journal]
Editorial The sense of light is the first sensation the human body develops. The importance of light is self-evident. However, we all know that the light we can see and perceive covers only a small section of the spectrum. Today, for Light People, we feature a researcher who is committed to exploring different spectral bands of light ranging from deep ultraviolet to terahertz waves and working on quantum semiconductor technology, Prof. Manijeh Razeghi of the Northwestern University in the United States. Known for her quick thinking and witty remarks, Prof. Razeghi is passionate about life and always kind to others. As a scientist, she does not limit her research to a single focus, instead, she works on the entire process from material selection, device design, processing, and manufacturing, all the way to product application. She has a strong passion for education, a commitment unwavered by fame or fortune. For her students, she is both a reliable source of knowledge and a motherly figure with a caring heart. She firmly believes that all things in nature can give her energy and inspiration. In science, she is a true “pioneer” in research and a “miner” of scientific discoveries. She advises young scientists to enjoy and love what they do, and turn their research into their hobby. As a female scientist, she calls on all women to realize their true value and potential. Next, let’s hear from Professor Manijeh Razeghi, a true star who radiates energy and light [reprint (PDF)]
 
15.  Demonstration of Zn-Diffused Planar Long-Wavelength Infrared Photodetector Based on Type-II Superlattice Grown by MBE
Rajendra K. Saroj, Van Hoang Nguyen, Steven Slivken, Gail J. Brown and Manijeh Razeghi
IEEE Journal of Quantum Electronics ...[Visit Journal]
We report on a planar long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattice with zinc diffusion. The superlattice structures were grown by molecular beam epitaxy, followed by a post-growth Zinc diffusion process in a metal-organic chemical vapor deposition reactor. The planar photodetectors showed a peak responsivity of 2.18 A/W, under an applied bias of −20 mV, with a corresponding quantum efficiency of 44.5%, without any anti-reflection coating, and had a 100% cut-off wavelength of 8.5 μm at 77 K temperature. These photodetectors exhibit a specific peak detectivity of 3.0×10^12 cm.Hz^1/2/W, with a dark current density of 1.5 × 10−5 A/cm2 and the differential-resistance-area product of ∼8.6 × 10−1 Ω.cm2, under an applied bias of −20 mV at 77 K. A comparative study between the planar and conventional mesa isolated photodetectors was also carried out. [reprint (PDF)]
 
14.  High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD
Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 161108-- April 21, 2020 ...[Visit Journal]
We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. [reprint (PDF)]
 
13.  Ultrafast Pulse Generation from Quantum Cascade Lasers
Feihu Wang, Xiaoqiong Qi, Zhichao Chen, Manijeh Razeghi, and Sukhdeep Dhillon
Wang, F.; Qi, X.; Chen, Z.; Razeghi, M.; Dhillon, S. Ultrafast Pulse Generation from Quantum Cascade Lasers. Micromachines 2022, 13, 2063. https://doi.org/10.3390/ mi13122063 ...[Visit Journal]
Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However, until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone considerable development in the past decade, which includes revealing the underlying mechanism of pulse formation, the development of an ultrafast THz detection technique, and the invention of novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast pulse generation from QCLs in both the THz and MIR regimes. [reprint (PDF)]
 
13.  Development of high power, InP-based quantum cascade lasers on alternative epitaxial platforms
Steven Slivken, Nirajman Shrestha, Manijeh Razeghi
Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 1289503 (28 January - 1 February 2024, San Francisco) doi: 10.1117/12.3009335 ...[Visit Journal]
In this talk, challenges and solutions associated with the monolithic, epitaxial integration of mid- and longwave- infrared, InP-based quantum cascade lasers on GaAs and Si wafers will be discussed. Initial results, including room temperature, high power, and continuous wave operation, will be described. [reprint (PDF)]
 
12.  High-brightness LWIR quantum cascade lasers
F. Wang, S. Slivken, and M. Razeghi
Optics Letters, vol. 46, No. 20, 5193 ...[Visit Journal]
Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range. [reprint (PDF)]
 
10.  Room Temperature Terahertz and Frequency Combs Based on Intersubband Quantum Cascade Laser Diodes: History and Future
Manijeh Razeghi and Quanyong Lu
Photonics 2025, 12, 79 ...[Visit Journal]
The year 2024 marks the 30-year anniversary of the quantum cascade laser (QCL), which is becoming the leading laser source in the mid-infrared (mid-IR) range. Since the first demonstration, QCL has undergone tremendous development in terms of the output power, wall plug efficiency, spectral coverage, wavelength tunability, and beam quality. Owing to its unique intersubband transition and fast gain features, QCL possesses strong nonlinearities that makes it an ideal platform for nonlinear photonics like terahertz (THz) difference frequency generation and direct frequency comb generation via fourwave mixing when group velocity dispersion is engineered. The feature of broadband, high-power, and low-phase noise of QCL combs is revolutionizing mid-IR spectroscopy and sensing by offering a new tool measuring multi-channel molecules simultaneously in the µs time scale. While THz QCL difference frequency generation is becoming the only semiconductor light source covering 1–5 THz at room temperature. In this paper, we will introduce the latest research from the Center for Quantum Devices at Northwestern University and briefly discuss the history of QCL, recent progress, and future perspective of QCL research, especially for QCL frequency combs, room temperature THz QCL difference frequency generation, and major challenges facing QCL in the future.
 
10.  High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
Donghai Wu, Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics &Technology 103439-- July 18, 2020 ...[Visit Journal]
By introducing a double barrier design, a high performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetector has been demonstrated. The photodetector exhibits a cut-off wavelength of ~4.50 µm at 150 K. At 150 K and −120 mV applied bias, the photodetector exhibits a dark current density of 1.21 × 10−5 A/cm2, a quantum efficiency of 45% at peak responsivity (~3.95 µm), and a specific detectivity of 6.9 × 1011 cm·Hz1/2/W. The photodetector shows background-limited operating temperature up to 160 K. [reprint (PDF)]
 
10.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
9.  Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition
Donghai Wu, Arash Dehzangi, and Manijeh Razeghi
Appl. Phys. Lett. 115, 061102-- August 6, 2019 ...[Visit Journal]
We report design, growth, and characterization of midwavelength infrared nBn photodetectors based on a type-II InAs/InAs1-xSbx superlattice on a GaSb substrate grown by metal-organic chemical vapor deposition. An InAs/AlAs1-ySby/InAs/InAs1-xSbx superlattice design was used as the large bandgap electron barrier in the photodetectors. At 150 K, the photodetector exhibits a peak responsivity of 1.23 A/W, corresponding to a quantum efficiency of 41% at an applied bias voltage of −100 mV under front-side illumination, with a 50% cut-off wavelength of 4.6 μm. With an R × A of 356 Ω·cm2 and a dark current density of 1.6 × 10−4 A/cm2 under an applied bias of −100 mV at 150 K, the photodetector exhibits a specific detectivity of 1.4 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 
9.  Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Manijeh Razeghi, Arash Dehzangi, Jiakai Li
Results in Optics Volume 2, January 2021, 100054 https://doi.org/10.1016/j.rio.2021.100054 ...[Visit Journal]
Type-II InAs/GaSb superlattices (T2SLs) has drawn a lot of attention since it was introduced in 1970, especially for infrared detection as a system of multi-interacting quantum wells. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process, which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). As a pioneer in the field, center for quantum devices (CQD) has been involved in growth, design, characterization, and introduction of T2SL material system for infrared photodetection. In this review paper, we will present the latest development of bias-selectable multi-band infrared photodetectors at the CQD, based on InAs/GaSb/AlSb and InAs/InAs1-xSbx type-II superlattice. [reprint (PDF)]
 
9.  High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11296, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II; 112961C-- February 25, 2020 ...[Visit Journal]
Since the demonstration of the first quantum cascade laser (QCL) in 1997, QCLs have undergone considerable developments in output power, wall plug efficiency (WPE), beam quality, wavelength coverage and tunability. Among them, many world-class breakthroughs were achieved at the Center for Quantum Device at Northwestern University. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the QCL family on high power, high wall-plug efficiency (WPE), continuous-wave (CW) and room temperature operation lasers. [reprint (PDF)]
 
9.  Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers
Yu Ma, Dapeng Wu, Ruixin Huang, Shichen Zhang, Binru Zhou, Zejun Ma, Yongqiang Sun, Junqi Liu, Ning Zhuo, Jinchuan Zhang, Shenqiang Zhai, Shuman Liu, Fengqi Liu, Manijeh Razeghi, and Quanyong Lu
Ma, Y., Wu, D., Huang, R., Zhang, S., Zhou, B., Ma, Z., Sun, Y., Liu, J., Zhuo, N., Zhang, J., Zhai, S., Liu, S., Liu, F., Razeghi, M. and Lu, Q. (2025), Self-Detecting Mid-Infrared Dual-Comb Spectroscopy Based on High-Speed Injection-Locked Quantum Cascade Lasers. Adv. Photonics Res. 2500062. https://doi.org/10.1002/adpr.202500062 ...[Visit Journal]
Dual-comb spectrometer based on quantum cascade lasers (QCLs) is gaining fast development and revolutionizing the precision measurement with high-frequency and temporal resolutions. In these measurements, high-bandwidth photodetectors are normally used for signal acquisition and processing, which complicates the measurement system. QCL is well-known for its picosecond gain-recovery time with an intrinsic bandwidth of tens of GHz. In this work, a compact self-detecting dual-comb spectroscopy (DCS) is demonstrated based on dispersion-engineered, high-speed packaged QCLs under coherent injection locking. The laser source is designed and fabricated into a hybrid-monolithic-integrated waveguide and epi-down packaged on a wideband-designed submount to fully explore the high-speed feature up to fourth-order harmonic state with a cutoff frequency of 40 GHz. The effective radio frequency (RF) injection locking diminishes the issue of optical feedback and enables high-bandwidth self-detection based on QCLs. Clear and stable multiheterodyne signal corresponding to a spectral range of 68 cm−1 and narrow comb tooth linewidth of ≈10 kHz is observed without using external detector or numerical process. The demonstrated broadband, high-power, self-detecting mid-infrared QCL DCS has a great potential for future applications of molecular sensing and spectroscopy. [reprint (PDF)]
 
8.  Combined resonant tunneling and rate equation modeling of terahertz quantum cascade lasers
Zhichao Chen , Andong Liu, Dong Chang , Sukhdeep Dhillon , Manijeh Razeghi , Feihu Wang
Journal of Applied Physics, 135, 115703 ...[Visit Journal]
Terahertz (THz) quantum cascade lasers (QCLs) are technologically important laser sources for the THz range but are complex to model. An efficient extended rate equation model is developed here by incorporating the resonant tunneling mechanism from the density matrix formalism, which permits to simulate THz QCLs with thick carrier injection barriers within the semi-classical formalism. A self-consistent solution is obtained by iteratively solving the Schrödinger-Poisson equation with this transport model. Carrier-light coupling is also included to simulate the current behavior arising from stimulated emission. As a quasi-ab initio model, intermediate parameters such as pure dephasing time and optical linewidth are dynamically calculated in the convergence process, and the only fitting parameters are the interface roughness correlation length and height. Good agreement has been achieved by comparing the simulation results of various designs with experiments, and other models such as density matrix Monte Carlo and non-equilibrium Green’s function method that, unlike here, require important computational resources. The accuracy, compatibility, and computational efficiency of our model enables many application scenarios, such as design optimization and quantitative insights into THz QCLs. Finally, the source code of the model is also provided in the supplementary material of this article for readers to repeat the results presented here, investigate and optimize new designs. [reprint (PDF)]
 
8.  Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice
Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi
Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8 ...[Visit Journal]
In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. [reprint (PDF)]
 
7.  Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020 ...[Visit Journal]
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 
7.  New design strategies for multifunctional and inexpensive quantum cascade lasers
Steven Slivken; Manijeh Razeghi
Proc. SPIE 10926, Quantum Sensing and Nano Electronics and Photonics XVI, 1092611-- February 1, 2019 ...[Visit Journal]
This manuscript describes some of the new advances in active mid-infrared photonic integrated circuits enabled by new quantum cascade laser technologies. This includes monolithic beam steering which was achieved via the integration of a widely tunable QCL and a tapered grating outcoupler. A record 17.9 degrees of steering with a low divergence beam (0.5 degrees) was achieved. In addition, the use of surface emitting architectures is proposed as a means to reduce the manufacturing cost of next-generation QCLs. A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. All of this is achieved while maintaining a high quality output beam, similar to a standard edge emitter. [reprint (PDF)]
 
6.  Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal]
In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)]
 
6.  High speed type-II superlattice based photodetectors transferred on sapphire
Arash Dehzangi, Ryan McClintock, Donghai Wu, Jiakai Li, Stephen Johnson, Emily Dial and Manijeh Razeghi
Applied Physics Express, Volume 12, Number 11-- October 3, 2019 ...[Visit Journal]
We report the substrate transfer of InAs/GaSb/AlSb based type-II superlattice (T2SL) e-SWIR photodetector from native GaSb substrates to low loss sapphire substrate in order to enhance the frequency response of the device. We have demonstrated the damage-free transfer of T2SL-based thin-films to sapphire substrate using top–down processing and a chemical epilayer release technique. After transfer the −3 dB cut-off frequency increased from 6.4 GHz to 17.2 GHz, for 8 μm diameter circular mesas under -15 V applied bias. We also investigated the cut-off frequency verses applied bias and lateral scaling to assess the limitations for even higher frequency performance. Direct Link [reprint (PDF)]
 
6.  High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition
Donghai Wu , Quentin Durlin, Arash Dehzangi , Yiyun Zhang , and Manijeh Razeghi
Appl. Phys. Lett. 114, 011104-- January 8, 2019 ...[Visit Journal]
We report the growth and characterization of mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes on GaSb substrates grown by metal-organic chemical vapor deposition. At 150 K, the 50% cut-off wavelength is 5.0 um, the dark current density is 3.3x10−4 A/cm2 under −20mV bias, and the peak responsivity is 1.76A/W corresponding to a quantum efficiency of 55% without anti-reflection coating. A specific detectivity of 1.2x1011cmHz1/2/W is achieved at 4.0 um under −20mV bias at 150 K. [reprint (PDF)]
 

Page 1 of 27:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (673 Items)