Page 1 of 20:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  >> Next  (495 Items)

55.  Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Arash Dehzangi, Jiakai Li and Manijeh Razeghi
Light: Science & Applications volume 10, Article number: 17 (2021) https://doi.org/10.1038/s41377-020-00453-x ...[Visit Journal]
The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) photodetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy, remote sensing, optical communication, and thermal and medical imaging. Here, we report the design, growth, and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/e cut-off wavelength of the device is 8.0 µm. At 77 K, unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10−7 A/cm2. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 1013 cm Hz1/2/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach. [reprint (PDF)]
 
47.  nBn extended short-wavelength infrared focal plane array
ARASH DEHZANGI, ABBAS HADDADI, ROMAIN CHEVALLIER, YIYUN ZHANG, AND MANIJEH RAZEGHI
Optics Letters Vol. 43, Issue 3, pp. 591-594-- February 1, 2018 ...[Visit Journal]
An extended short-wavelength nBn InAs/GaSb/AlSb type-II superlattice-based infrared focal plane array imager was demonstrated. A newly developed InAs0.10Sb0.90∕GaSb superlattice design was used as the large-bandgap electron barrier in this photodetector. The large band gap electron-barrier design in this nBn photodetector architecture leads to the device having lower dark current densities. A new bi-layer etch-stop scheme using a combination of InAs0.91Sb0.09 bulk and AlAs0.1Sb0.9∕GaSb superlattice layers was introduced to allow complete substrate removal and a shorter wavelength cut-on. Test pixels exhibit 100% cutoff wavelengths of ∼2.30 and ∼2.48 μm at 150 and 300 K, respectively. The devices achieve saturated quantum efficiency values of 59.7% and 63.8% at 150 and 300 K, respectively, under backside illumination and without any antireflection coating.At 150 K, photodetectors exhibit dark current density of 8.75 × 10−8 A∕cm² under −400 mV applied bias, providing specific detectivity of 2.82 × 1012 cm · Hz1∕2∕W at 1.78 μm. At 300 K, the dark current density reaches 4.75 × 10−2 A∕cm² under −200 mV bias, providing a specific detectivity of 8.55 × 109 cm · Hz1∕2∕W 1.78 μm. [reprint (PDF)]
 
24.  Room Temperature, Continuous Wave Quantum Cascade Laser Grown Directly on a Si Wafer
Steven Slivken and Manijeh Razeghi
S. Slivken and M. Razeghi,, Journal of Quantum Electronics, Vol. 59, No. 4, doi: 10.1109/JQE.2023.3282710 ...[Visit Journal]
We report the room temperature demonstration of a high power, continuous wave, LWIR quantum cascade laser grown directly on a Si substrate. A new wafer, based on a high efficiency, strain-balanced laser core was processed into a lateral injection buried heterostructure laser geometry. A pulsed efficiency of 11.1% was demonstrated at room temperature, with an emission wavelength of 8.35 μm. With low fidelity, epilayer-up packaging, CW emission up to 343 K was also demonstrated, with a maximum output power of >0.7 W near room temperature. [reprint (PDF)]
 
21.  High Performance Planar Antimony-Based Superlattice Photodetectors Using Zinc Diffusion Grown by MBE
Jiakai Li, R. K. Saroj, Steven Slivken, V. H. Nguyen, Gail Brown and Manijeh Razeghi
Photonics 2022, 9, 664 ...[Visit Journal]
In this letter, we report a mid-wavelength infrared (MWIR) planar photodetector based on InAs/InAsSb type-II superlattices (T2SLs) that has a cut-off wavelength of 4.3 um at 77 K. The superlattice for the device was grown by molecular beam epitaxy while the planar device structure was achieved by Zinc diffusion process in a metal–organic chemical vapor deposition reactor. At 77 K, the peak responsivity and the corresponding quantum efficiency had the value of 1.42 A/W and 48% respectively at 3.7 um under -20 mV for the MWIR planar photodetector. At 77 K, the MWIR planar photodetector exhibits a dark current density of 2.0E5 A/cm^2 and the R0A value of ~3.0E2 Ohm cm^2 under -20 mV, which yielded a specific detectivity of 4.0E11 cm Hz^(1/2)/W at 3.7 um. At 150 K, the planar device showed a dark current density of 6.4E-5 A/cm^2 and a quantum efficiency of 49% at ~3.7 um under -20 mV, which yielded a specific detectivity of 2.0E11 cm Hz^(1/2)/W. [reprint (PDF)]
 
17.  

-- November 30, 1999
 
14.  Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal]
In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)]
 
12.  Neutron Activation Analysis of an Iranian Cigarette and its Smoke
Z. Abedinzadeh, M. Razeghi and B. Parsa
Z. Abedinzadeh, M. Razeghi and B. Parsa, Journal of Radioanalytical Chemistry, VoL 35 [1977) 373-376 ...[Visit Journal]
Non-destructive neutron activation analysis, employing a high-resolution Ge(Li) detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. [reprint (PDF)]
 
11.  High-brightness LWIR quantum cascade lasers
F. Wang, S. Slivken, and M. Razeghi
Optics Letters, vol. 46, No. 20, 5193 ...[Visit Journal]
Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range. [reprint (PDF)]
 
11.  EPR STUDY OF Mn 2. AROUND THE FERROELASTIC TRANSITION POINT OF Pb3(PO4)2
M. Razeghi, B. Houlier and M. Yuste
M. Razeghi et al. EPR STUDY OF Mn 2. AROUND THE FERROELASTIC TRANSITION POINT OF Pb3(PO4)2, Solid State Communications, Vol. 26, pp. 665-668. ...[Visit Journal]
The spin Hamiltonian parameters of Mn 2÷ have been measured above and below the transition point (180"C) of the lead phosphate. They show that Mn 2+ substitutes a Pbl ion. Between 175 and 180vC the principal axis OX of the fine tensor is parallel to the wave vector of the soft mode which condensates at the transition point. An exaltation of the linewidth is observed. The linewidth remains constant within 50C of Te; in this temperature range, the "static regime" is achieved, and the correlation time of the fluctuations is less than 10 -s sec. [reprint (PDF)]
 
9.  Combined resonant tunneling and rate equation modeling of terahertz quantum cascade lasers
Zhichao Chen , Andong Liu, Dong Chang , Sukhdeep Dhillon , Manijeh Razeghi , Feihu Wang
Journal of Applied Physics, 135, 115703 ...[Visit Journal]
Terahertz (THz) quantum cascade lasers (QCLs) are technologically important laser sources for the THz range but are complex to model. An efficient extended rate equation model is developed here by incorporating the resonant tunneling mechanism from the density matrix formalism, which permits to simulate THz QCLs with thick carrier injection barriers within the semi-classical formalism. A self-consistent solution is obtained by iteratively solving the Schrödinger-Poisson equation with this transport model. Carrier-light coupling is also included to simulate the current behavior arising from stimulated emission. As a quasi-ab initio model, intermediate parameters such as pure dephasing time and optical linewidth are dynamically calculated in the convergence process, and the only fitting parameters are the interface roughness correlation length and height. Good agreement has been achieved by comparing the simulation results of various designs with experiments, and other models such as density matrix Monte Carlo and non-equilibrium Green’s function method that, unlike here, require important computational resources. The accuracy, compatibility, and computational efficiency of our model enables many application scenarios, such as design optimization and quantitative insights into THz QCLs. Finally, the source code of the model is also provided in the supplementary material of this article for readers to repeat the results presented here, investigate and optimize new designs.
 
8.  III-Nitride/Ga2O3 heterostructure for future power electronics: opportunity and challenges
Nirajman Shrestha, Jun Hee Lee, F. H. Teherani, Manijeh Razeghi
Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 128950B (28 January - 1 February 2024, San Francisco)http://dx.doi.org/10.1117/12.3011688 ...[Visit Journal]
Ga2O3 has become the new focal point of high-power semiconductor device research due to its superior capability to handle high voltages in smaller dimensions and with higher efficiencies compared to other commercialized semiconductors. However, the low thermal conductivity of the material is expected to limit device performance. To compensate for the low thermal conductivity of Ga2O3 and to achieve a very high density 2-dimensional electron gas (2DEG), an innovative idea is to combine Ga2O3 with III-Nitrides (which have higher thermal conductivity), such as AlN. However, metal-polar AlN/β-Ga2O3 heterojunction provides type-II heterojunction which are beneficial for optoelectronic application, because of the negative value of specific charge density. On the other hand, N-polar AlN/β- Ga2O3 heterostructures provide higher 2DEG concentration and larger breakdown voltage compared to conventional AlGaN/GaN devices. This advancement would allow the demonstration of RF power transistors with a 10x increase in power density compared to today’s State of the Art (SoA) and provide a solution to size, weight, and power-constrained applications [reprint (PDF)]
 
7.  Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers
Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi
J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal]
Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)]
 
7.  Ultrafast Pulse Generation from Quantum Cascade Lasers
Feihu Wang, Xiaoqiong Qi, Zhichao Chen, Manijeh Razeghi, and Sukhdeep Dhillon
Wang, F.; Qi, X.; Chen, Z.; Razeghi, M.; Dhillon, S. Ultrafast Pulse Generation from Quantum Cascade Lasers. Micromachines 2022, 13, 2063. https://doi.org/10.3390/ mi13122063 ...[Visit Journal]
Quantum cascade lasers (QCLs) have broken the spectral barriers of semiconductor lasers and enabled a range of applications in the mid-infrared (MIR) and terahertz (THz) regimes. However, until recently, generating ultrashort and intense pulses from QCLs has been difficult. This would be useful to study ultrafast processes in MIR and THz using the targeted wavelength-by-design properties of QCLs. Since the first demonstration in 2009, mode-locking of QCLs has undergone considerable development in the past decade, which includes revealing the underlying mechanism of pulse formation, the development of an ultrafast THz detection technique, and the invention of novel pulse compression technology, etc. Here, we review the history and recent progress of ultrafast pulse generation from QCLs in both the THz and MIR regimes. [reprint (PDF)]
 
5.  High Thermal Stability of κ-Ga2O3 Grown by MOCVD
Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi
Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals 2021, 11, 446. https://doi.org/ 10.3390/cryst11040446 ...[Visit Journal]
We report a high thermal stability of kappa gallium oxide grown on c-plane sapphire substrate by metal organic chemical vapor deposition. Kappa gallium oxide is widely known as a metastable polymorph transitioning its phase when subjected to a high temperature. Here, we show the kappa gallium oxide whose phase is stable in a high temperature annealing process at 1000 °C. These oxide films were grown at 690 °C under nitrogen carrier gas. The materials showed high electrical resistivity when doped with silicon, whereas the film conductivity was significantly improved when doped with both indium and silicon. This work provides a pathway to overcoming limitations for the advance in utilizing kappa gallium oxide possessing superior electrical characteristics. [reprint (PDF)]
 
5.  

-- November 30, 1999
 
5.  Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi
Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal]
Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)]
 
5.  High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11296, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II; 112961C-- February 25, 2020 ...[Visit Journal]
Since the demonstration of the first quantum cascade laser (QCL) in 1997, QCLs have undergone considerable developments in output power, wall plug efficiency (WPE), beam quality, wavelength coverage and tunability. Among them, many world-class breakthroughs were achieved at the Center for Quantum Device at Northwestern University. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the QCL family on high power, high wall-plug efficiency (WPE), continuous-wave (CW) and room temperature operation lasers. [reprint (PDF)]
 
5.  High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs
Steven Slivken and Manijeh Razeghi
Photonics 2022, 9(4), 231 (COVER ARTICLE) ...[Visit Journal]
The motivation behind this work is to show that InP-based intersubband lasers with high power can be realized on substrates with significant lattice mismatch. This is a primary concern for the integration of mid-infrared active optoelectronic devices on low-cost photonic platforms, such as Si. As evidence, an InP-based mid-infrared quantum cascade laser structure was grown on a GaAs substrate, which has a large (4%) lattice mismatch with respect to InP. Prior to laser core growth, a metamorphic buffer layer of InP was grown directly on a GaAs substrate to adjust the lattice constant. Wafer characterization data are given to establish general material characteristics. A simple fabrication procedure leads to lasers with high peak power (>14 W) at room temperature. These results are extremely promising for direct quantum cascade laser growth on Si substrates. [reprint (PDF)]
 
4.  Demonstration of Zn-Diffused Planar Long-Wavelength Infrared Photodetector Based on Type-II Superlattice Grown by MBE
Rajendra K. Saroj, Van Hoang Nguyen, Steven Slivken, Gail J. Brown and Manijeh Razeghi
IEEE Journal of Quantum Electronics ...[Visit Journal]
We report on a planar long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattice with zinc diffusion. The superlattice structures were grown by molecular beam epitaxy, followed by a post-growth Zinc diffusion process in a metal-organic chemical vapor deposition reactor. The planar photodetectors showed a peak responsivity of 2.18 A/W, under an applied bias of −20 mV, with a corresponding quantum efficiency of 44.5%, without any anti-reflection coating, and had a 100% cut-off wavelength of 8.5 μm at 77 K temperature. These photodetectors exhibit a specific peak detectivity of 3.0×10^12 cm.Hz^1/2/W, with a dark current density of 1.5 × 10−5 A/cm2 and the differential-resistance-area product of ∼8.6 × 10−1 Ω.cm2, under an applied bias of −20 mV at 77 K. A comparative study between the planar and conventional mesa isolated photodetectors was also carried out. [reprint (PDF)]
 
4.  Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi
Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal]
Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)]
 
4.  Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain
N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi
Opt. Express 23, 21159-21164 -- August 10, 2015 ...[Visit Journal]
A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. [reprint (PDF)]
 
4.  High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ ~ 3.55 μm InP-based quantum cascade lasers
N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 212104-1-- May 21, 2012 ...[Visit Journal]
We report two highly strain-balanced InP-based AlInAs/GaInAs quantum cascade lasers emitting near 3.39 and 3.56 . A pulsed threshold current density of only 1.1 kA/cm² has been achieved at room temperature for both lasers with characteristic temperatures (T0) of 166  K and 152  K, respectively. The slope efficiency is also relatively temperature insensitive with characteristic temperatures (T1) of 116 K and 191  K, respectively. Continuous wave powers of 504 mW and 576 mW are obtained at room temperature, respectively. This was accomplished without buried ridge processing. [reprint (PDF)]
 
4.  High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si
Steven Slivken and Manijeh Razeghi
Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal]
We report on the realization of an InP-based long wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power (>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)]
 
4.  Toward realizing high power semiconductor terahertz laser sources at room temperature
Manijeh Razeghi
Proc. SPIE 8023, Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, 802302 (May 25, 2011)-- May 25, 2011 ...[Visit Journal]
The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (∼ 36 meV) in this material system. With a much larger LO-phonon energy of ∼ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths. [reprint (PDF)]
 
4.  Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice
Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi
Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8 ...[Visit Journal]
In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. [reprint (PDF)]
 

Page 1 of 20:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  >> Next  (495 Items)