About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 10 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Sb-based infrared materials and photodetectors for the near room temperature applications J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal] We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
2. | High Power 0.98 μm GaInAs/GaAs/GaInP Multiple Quantum Well Laser K. Mobarhan, M. Razeghi, G. Marquebielle and E. Vassilaki Journal of Applied Physics 72 (9)-- November 1, 1992 ...[Visit Journal] We report the fabrication of high quality Ga0.8In0.2As/GaAs/Ga0.51In0.49P multiple quantum well laser emitting at 0.98 μm grown by low pressure metalorganic chemical vapor deposition. Continuous wave operation with output power of 500 mW per facet was achieved at room temperature for a broad area laser with 130 μm width and 300 μm cavity length. This is an unusually high value of output power for this wavelength laser in this material system. The differential quantum efficiency exceeded 75% with excellent homogeneity and uniformity. The characteristic temperature, T0 was in the range of 120–130 K. [reprint (PDF)] |
2. | Monolithic, steerable, mid-infrared laser realized with no moving parts Slivken S, Wu D, Razeghi M Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal] The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)] |
2. | Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015 ...[Visit Journal] (In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN
peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related
visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. [reprint (PDF)] |
2. | High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal] We report on solar-blind ultraviolet, AlxGa1-x N-
based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to
66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)] |
2. | High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | Very Long Wavelength GaAs/GaInP Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal] We demonstrate long wavelength quantum well infrared photodetectors with GaAs quantum wells and GaInP barriers grown using gas-source molecular beam epitaxy. Wafers were grown with varying well widths. The optimum well width was 75 angstrom, which resulted in a detection peak at 13 μm and a cutoff wavelength of 15 μm. Dark current measurements of the samples with 15 μm cutoff wavelength show low dark current densities. The dark current characteristics have been investigated as a function of temperature and electron density in the well and compared to a model which takes into account thermionic emission and thermally assisted tunneling. The model is used to extract a saturation velocity of 1.5 x 105 cm/s for electrons. The photoelectron lifetime before recapture has been deduced from this carrier velocity and photoconductive gain measurements. The lifetime is found to be approximately 5 ps. Preliminary focal plane array imaging is demonstrated. [reprint (PDF)] |
2. | High Detectivity InAs Quantum-Dot Infrared Photodetectors Grown on InP by Metalorganic Chemical Vapor Deposition W. Zhang, H. Lim, M. Taguchi, S. Tsao, B. Movaghar, and M. Razeghi Applied Physics Letters, 86 (19)-- May 9, 2005 ...[Visit Journal] We report a high-detectivity InAs quantum-dot infrared photodetector. The InAs quantum dots were grown by self-assembly on InP substrates via low-pressure metal–organic chemical–vapor deposition. Highly uniform quantum dots with a density of 4×1010 cm2 were grown on a GaAs/InP matrix. Photoresponse was observed at temperatures up to 160 K with a peak of 6.4 µm and cutoff of 6.6 µm. Very low dark currents and noise currents were obtained by inserting Al0.48In0.52As current blocking layers. The background-limited performance temperature was 100 K. A detectivity of 1.0×1010 cm·Hz½/W was obtained at 77 K with a bias of –1.1 V. [reprint (PDF)] |
2. | Room temperature terahertz semiconductor frequency comb Quanyong Lu, Feihu Wang, Donghai Wu, Steven Slivken & Manijeh Razeghi Nature Communications 10, 2403-- June 3, 2019 ...[Visit Journal] A terahertz (THz) frequency comb capable of high-resolution measurement will significantly
advance THz technology application in spectroscopy, metrology and sensing. The recently
developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great
potentials with high power and broadband spectrum. Here, we report a room temperature
THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation
from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR
comb with an integrated mid-IR single mode based on distributed-feedback grating without
using external optical elements. The grating Bragg wavelength is largely detuned from the
gain peak to suppress the grating dispersion and support the comb operation in the high gain
spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it
with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb
will find applications to room temperature chip-based THz spectroscopy. [reprint (PDF)] |
2. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
2. | High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ ~ 3.55 μm InP-based quantum cascade lasers N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 100, No. 21, p. 212104-1-- May 21, 2012 ...[Visit Journal] We report two highly strain-balanced InP-based AlInAs/GaInAs quantum cascade lasers emitting near 3.39 and 3.56 . A pulsed threshold current density of only 1.1 kA/cm² has been achieved at room temperature for both lasers with characteristic temperatures (T0) of 166 K and 152 K, respectively. The slope efficiency is also relatively temperature insensitive with characteristic temperatures (T1) of 116 K and 191 K, respectively. Continuous wave powers of 504 mW and 576 mW are obtained at room temperature, respectively. This was accomplished without buried ridge processing. [reprint (PDF)] |
2. | Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, and M. Razeghi Virtual Journal of Nanoscale Science & Technology, 5-- August 5, 2002 ...[Visit Journal][reprint (PDF)] |
2. | Core-shell GaN-ZnO Moth-eye Nanostructure Arrays Grown on a-SiO2/Si (111) as a basis for Improved InGaN-based Photovoltaics and LEDs D.J. Rogers, V.E. Sandana, S. Gautier, T. Moudakir, M. Abid, A. Ougazzaden, F. Hosseini Teherani, P. Bove, M. Molinari, M. Troyon, M. Peres, Manuel J. Soares, A.J. Neves, T. Monteiro, D. McGrouther, J.N. Chapman, H.-J. Drouhin, R. McClintock, M. Razeghi Photonics and Nanostructures - Fundamentals and Applications, Volume 15, Pages 53-58-- March 30, 2015 ...[Visit Journal] Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (111) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400–720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN. [reprint (PDF)] |
2. | Passivation of type-II InAs/GaSb double heterostructure P.Y. Delaunay, A. Hood, B.M. Nguyen, D. Hoffman, Y. Wei, and M. Razeghi Applied Physics Letters, Vol. 91, No. 9, p. 091112-1-- August 27, 2007 ...[Visit Journal] Focal plane array fabrication requires a well passivated material that is resistant to aggressive processes. The authors report on the ability of type-II InAs/GaSb superlattice heterodiodes to be more resilient than homojunctions diodes in improving sidewall resistivity through the use of various passivation techniques. The heterostructure consisting of two wide band gap (5 µm) superlattice contacts and a low band gap active region (11 µm) exhibits an R0A averaging of 13·Ω cm2. The devices passivated with SiO2, Na2S and SiO2 or polyimide did not degrade compared to the unpassivated sample and the resistivity of the sidewalls increased to 47 kΩ·cm.
[reprint (PDF)] |
2. | High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature H. Lim, S. Tsao, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007 ...[Visit Journal] The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. [reprint (PDF)] |
2. | Type-II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm Y. Wei, A. Gin, M. Razeghi and G.J. Brown Applied Physics Letters, 81 (19)-- November 4, 2002 ...[Visit Journal] We report the most recent advance in the area of type-II InAs/GaSb superlattice photovoltaic detectors that have cutoff wavelengths beyond 25 μm, with some at nearly 32 μm. The photodiodes with a heterosuperlattice junction showed Johnson noise limited peak detectivity of 1.05 x 1010 cm Hz½/W at 15 μm under zero bias, and peak responsivity of 3 A/W under -40 mV reverse bias at 34 K illuminated by ~300 K background with a 2π field-of-view. The maximum operating temperature of these detectors ranges from 50 to 65 K. No detectable change in the blackbody response has been observed after 5-6 thermal cyclings, with temperature varying between 15 and 296 K in vacuum. [reprint (PDF)] |
2. | Demonstration of InAsSb/AlInSb Double Heterostructure Detectors for Room Temperature Operation in the 5–8 μm Wavelength Range J.S. Wojkowski, H. Mohseni, J.D. Kim, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the first demonstration of InAsSb/AlInSb double heterostructure detectors for room temperature operation. The structures were grown in a solid source molecular beam epitaxy reactor on semi-insulating GaAs substrate. The material was processed to 400x400 micrometer mesas using standard photolithography, etching, and metallization techniques. No optical immersion or surface passivation was used. The photovoltaic detectors showed a cutoff wavelength at 8 micrometer at 300 K. The devices showed a high quantum efficiency of 40% at 7 μm at room temperature. A responsivity of 300 mA/W was measured at 7 μm under a reverse bias of 0.25 V at 300 K resulting in a Johnson noise limited detectivity of 2x108 cm·Hz½/W. [reprint (PDF)] |
2. | Tight-binding theory for the thermal evolution of optical band gaps in semiconductors and superlattices S. Abdollahi Pour, B. Movaghar, and M. Razeghi American Physical Review, Vol. 83, No. 11, p. 115331-1-- March 15, 2011 ...[Visit Journal] A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors and superlattices using an empirical tight-binding method has been developed. The approach follows closely established procedures and allows parameter variations which give rise to perfect fits to the experimental data. We also apply the tight-binding method to the far more complex problem of band structures in Type-II infrared superlattices for which we have access to original experimental data recently acquired by our group. Given the close packing of bands in small band-gap Type-II designs, k·p methods become difficult to handle, and it turns out that the sp3s* tight-binding scheme is a practical and powerful asset. Other approaches to band-gap shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term, the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory. [reprint (PDF)] |
2. | Reliable GaN-based resonant tunneling diodes with reproducible room-temperature negative differential resistance C. Bayram, D.K. Sadana, Z. Vashaei and M. Razeghi SPIE Proceedings, Vol. 8268, p. 826827-- January 22, 2012 ...[Visit Journal] negative differential resistance (NDR). Compared to other negative resistance devices such as (Esaki) tunnel and transferred-electron devices, RTDs operate much faster and at higher temperatures. III-nitride materials, composed of AlGaInN alloys, have wide bandgap, high carrier mobility and thermal stability; making them ideal for high power high frequency RTDs. Moreover, larger conduction band discontinuity promise higher NDR than other materials (such as GaAs) and room-temperature operation. However, earlier efforts on GaN-based RTD structures have failed to achieve a
reliable and reproducible NDR. Recently, we have demonstrated for the first time that minimizing dislocation density and eliminating the piezoelectric fields enable reliable and reproducible NDR in GaN-based RTDs even at room
temperature. Observation of NDR under both forward and reverse bias as well as at room and low temperatures attribute the NDR behaviour to quantum tunneling. This demonstration marks an important milestone in exploring III-nitride quantum devices, and will pave the way towards fundamental quantum transport studies as well as for high frequency
optoelectronic devices such as terahertz emitters based on oscillators and cascading structures. [reprint (PDF)] |
2. | Thermal characteristics and analysis of quantum cascade lasers for biochemical sensing applications J.S. Yu, H.K. Lee, S. Slivken, and M. Razeghi SPIE Proceedings, Biosensing II, San Diego, CA (August 2-6, 2009), Vol. 7397, p. 739705-1-- August 2, 2009 ...[Visit Journal] We studied the thermal characteristics and analysis of InGaAs/InAlAs quantum cascade lasers (QCLs) in terms of internal temperature distribution, heat flux, and thermal conductance from the heat transfer simulation. The heat source densities were obtained from threshold power densities measured experimentally for QCLs under room-temperature continuous-wave operation. The use of a thick electroplated Au around the laser ridges helps increase the heat removal from devices. The two-dimensional anisotropic heat dissipation model was used to analyze the thermal behaviors inside the device. The simulation results were also compared with those estimated from experimental data. [reprint (PDF)] |
2. | 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal] We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)] |
2. | Ridge-Width Dependence on High-Temperature Continuous-Wave Quantum-Cascade Laser Operation S. Slivken, J.S. Yu, A. Evans, L. Doris, J. David, and M. Razeghi IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004 ...[Visit Journal] We report continuous-wave (CW) operation of quantum-cascade lasers (λ=6 μm) up to a temperature of 313 K (40°C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm2, respectively, for a high-reflectivity-coated 12-μm-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 μm. A clear trend of improved performance is observed as the ridge narrows. [reprint (PDF)] |
2. | Investigation of surface leakage reduction for small pitch shortwave infrared photodetectors Arash Dehzangi, Quentin Durlin, Donghai Wu, Ryan McClintock, Manijeh Razeghi Semiconductor Science and Technology, 34(6), 06LT01-- May 25, 2019 ...[Visit Journal] Different passivation techniques are investigated for reducing leakage current in small pixel (down to 9 μm) heterostructure photodetectors designed for the short-wavelength infrared range. Process evaluation test chips were fabricated using the same process as for focal plane arrays. Arrays of small photodetectors were electrically characterized under dark conditions from 150 K to room temperature. In order to evaluate the leakage current, we studied the relation between the inverse of dynamic resistance at −20 mV and zero bias and perimeter over area P/A ratio as the pixel size is scaled down. At 150 K, leakage current arising from the perimeter dominates while bulk leakage dominates at room temperature. We find that in shortwave devices directly underfilling hybridized devices with a thermoset epoxy resin without first doing any additional passivation/protection after etching gives the lowest leakage with a surface resistance of 4.2 × 109 and 8.9 × 103 Ω· cm−1 at 150 and 300 K, for −20 mV of bias voltage, respectively. [reprint (PDF)] |
2. | Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi Applied Physics Letters 71 (7)-- August 18, 1997 ...[Visit Journal] The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. [reprint (PDF)] |
2. | High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F.J. Sanchez, J. Diaz, and M. Razeghi Applied Physics Letters 74 (5)-- February 1, 1999 ...[Visit Journal] We present the fabrication and characterization of nonintentionally doped GaN and GaN:Mg Schottky metal–semiconductor–metal (MSM) photodetectors, grown on sapphire by metalorganic chemical vapor deposition. Low-leakage, Schottky contacts were made with Pt/Au. The devices are visible blind, with an ultraviolet/green contrast of about five orders of magnitude. The response times of the MSM devices were <10 ns and about 200 ns for GaN and GaN:Mg, respectively. The noise power spectral density remains below the background level of the system (10−24 A²/Hz) up to 5 V, for the undoped GaN MSM detector. [reprint (PDF)] |
Page 10 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|