About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 12 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Novel process for direct bonding of GaN onto glass substrates using sacrificial ZnO template layers to chemically lift-off GaN from c-sapphire Rogers, D. J.; Ougazzaden, A.; Sandana, V. E.; Moudakir, T.; Ahaitouf, A.; Teherani, F. Hosseini; Gautier, S.; Goubert, L.; Davidson, I. A.; Prior, K. A.; McClintock, R. P.; Bove, P.; Drouhin, H.-J.; Razeghi, M. Proc. SPIE 8263, Oxide-based Materials and Devices III, 82630R (February 9, 2012)-- February 9, 2012 ...[Visit Journal] GaN was grown on ZnO-buffered c-sapphire (c-Al2O3) substrates by Metal Organic Vapor Phase Epitaxy. The ZnO then served as a sacrificial release layer, allowing chemical lift-off of the GaN from the c-Al2O3 substrate via selective wet etching of the ZnO. The GaN was subsequently direct-wafer-bonded onto a glass substrate. X-Ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray microanalysis, Room Temperature Photoluminescence & optical microscopy confirmed bonding of several mm2 of crack-free wurtzite GaN films onto a soda lime glass microscope slide with no obvious deterioration of the GaN morphology. Using such an approach, InGaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming and reusing the substrate. [reprint (PDF)] |
2. | Demonstration of a 256x256 Middle-Wavelength Infrared Focal Plane Array based on InGaAs/InGaP Quantum Dot Infrared Photodetectors (QDIPs) J. Jiang, K. Mi, S. Tsao, W. Zhang, H. Lim, T.O'Sullivan, T. Sills, M. Razeghi, G.J. Brown, and M.Z. Tidrow Virtual Journal of Nanoscale Science and Technology 9 (13)-- April 5, 2004 ...[Visit Journal][reprint (PDF)] |
2. | Microstructural compositional, and optical characterization of GaN grown by metal organic vapor phase epitaxy on ZnO epilayers D.J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, F. Jomard, M. Molinari, M. Troyon, D. McGrouther, J.N. Chapman, M. Razeghi and A. Ougazzaden Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1655-1657-- May 29, 2009 ...[Visit Journal] This article presents the results of microstructural, compositional, and optical characterization of GaN films grown on ZnO buffered c-sapphire substrates. Transmission electron microscopy showed epitaxy between the GaN and the ZnO, no degradation of the ZnO buffer layer, and no evidence of any interfacial compounds. Secondary ion mass spectroscopy revealed negligible Zn signal in the GaN layer away from the GaN/ZnO interface. After chemical removal of the ZnO, room temperature (RT) cathodoluminescence spectra had a single main peak centered at ~ 368 nm (~3.37 eV), which was indexed as near-band-edge (NBE) emission from the GaN layer. There was no evidence of the ZnO NBE peak, centered at ~379 nm (~3.28 eV), which had been observed in RT photoluminescence spectra prior to removal of the ZnO. [reprint (PDF)] |
2. | High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | III-nitride based avalanche photo detectors R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi and M. Ulmer Proceedings, Vol. 7780, p. 77801B, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal] Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized-GaN APDs operating in Geiger mode can achieve gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs and discuss the critical design choices necessary to achieve high performance Geiger mode devices. Other major technical issues associated with the realization of visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. The photon detection efficiency, dark count rate, and spectral response of or most recent Geiger-mode GaN APDs on free-standing GaN substrates are studied under low photon fluxes, with single photon detection capabilities being demonstrated. We also present our latest results regarding linear mode gain uniformity: the study of gain uniformity helps reveal the spatial origins of gain so that we can better understand the role of defects. [reprint (PDF)] |
2. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal] Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
2. | Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices Abbas Haddadi, and Manijeh Razeghi Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal] A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5 A/cm2 providing a specific detectivity of ∼2×1011 cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10 mV, the device’s dark current density was 5.5×10−8 A/cm2. At zero bias, its specific detectivity was 1×1011 cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2 V bias voltage, the device exhibited a dark current density of 1.8×10−6 A/cm2 providing a specific detectivity of 6.3×1011 cm·Hz1/2/W at 150K. [reprint (PDF)] |
2. | Overview of Quantum Cascade Laser Research at the Center for Quantum Devices S. Slivken, A. Evans, J. Nguyen, Y. Bai, P. Sung, S.R. Darvish, W. Zhang and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000B-1-8.-- February 1, 2008 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. In the past year alone, the efficiency and power of our short wavelength lasers (~4.8 µm) has doubled. In continuous wave at room temperature, we have now separately demonstrated ~10% wallplug efficiency and ~700 mW of output power. Up to now, we have been able to show that room temperature continuous wave operation with > 100 mW output power in the 3.8 < λ < 11.5 µm wavelength range is possible.
[reprint (PDF)] |
2. | High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures P.Y. Delaunay and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008 ...[Visit Journal] Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%.
[reprint (PDF)] |
2. | High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices P. Manurkar, S.R. Darvish, B.M. Nguyen, M. Razeghi and J. Hubbs Applied Physics Letters, Vol. 97, No 19, p. 193505-1-- November 8, 2010 ...[Visit Journal] A large format 1k × 1k focal plane array (FPA) is realized using type-II superlattice photodiodes for long wavelength infrared detection. Material growth on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 11 μm across the entire wafer. The FPA shows excellent imaging. Noise equivalent temperature differences of 23.6 mK at 81 K and 22.5 mK at 68 K are achieved with an integration time of 0.13 ms, a 300 K background and f/4 optics. We report a dark current density of 3.3×10−4 A·cm−2 and differential resistance-area product at zero bias R0A of 166 Ω·cm² at 81 K, and 5.1×10−5 A·cm−2 and 1286 Ω·cm², respectively, at 68 K. The quantum efficiency obtained is 78%. [reprint (PDF)] |
2. | Ultraviolet Detector Materials and Devices Studied by Femtosecond Nonlinear Optical Techniques M. Wraback, H. Shen, P. Kung, M. Razeghi, J.C. Carrano, T. Li, and J.C. Campbell SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Femtosecond nonlinear optical techniques have been employed in the study of carrier dynamics and transport in UV detector materials. Visible femtosecond pulses derived from the signal beam of a 250 kHz regenerative amplifier-pumped optical parametric amplifier were frequency doubled to obtain pulses tunable from 250 nm to 375 nm. Time-resolved reflectivity experiments indicate that the room-temperature carrier lifetime in GaN grown by double lateral epitaxial overgrowth is about 3 times longer than that of GaN grown on sapphire without benefit of this technique. The electron velocity-field characteristics and saturation velocity in GaN have been obtained form time-resolved studies of electroabsorption in a GaN p-i-n diode. The peak steady- state velocity of 1.9x107 cm/s in this device occurs at 225 kV/cm. Time-resolved transmission measurements have been used to monitor ultrafast carrier relaxation phenomena in a thin AlGaN layer with bandgap in the solar blind region of the spectrum. Excitation intensity and wavelength dependent studies of the photoinduced bleaching decays suggest that they are primarily governed by trapping in a high density of sub-bandgap defect levels. [reprint (PDF)] |
2. | Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications M. Razeghi SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal] Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)] |
2. | GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal] In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. [reprint (PDF)] |
2. | Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heatsinks A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel SPIE Conference, San Jose, CA, Vol. 6127, pp. 612702-- January 23, 2006 ...[Visit Journal] We report substantially improved performance of high power quantum cascade lasers by utilizing epi-side down mounting that provides superior heat dissipation properties. We have obtained CW power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epi-side down mounting has also permitted us to carry out initial lifetime tests on the mid-IR QCLs. No degradation of power output is seen even after over 300 hours of CW operation at 25°C with power output in excess of 300 mW. We believe these improvements should permit incorporation of mid-IR QCLs in reliable instrumentation. [reprint (PDF)] |
2. | Quntum Cascade Laser Breakthrough for Advanced Remote Detection Manijeh Razeghi, Wenjia Zhou, Donghai Wu, Ryan McClintock, and Steven Slivken Photonics Spectra, November issue-- November 1, 2016 ...[Visit Journal] The atoms in a molecule can bend, stretch and rotate with respect to one another, and these excitations are largely optically active. Most molecules, from simple to moderately complex, have a characteristic absorption spectrum in the 3- to 14-µrn wavelength range that can be uniquely identified and quantified in real time. Infrared spectroscopy has been used to study these absorption features and develop different molecular "fingerprints." |
2. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi Proc. SPIE 11687 (2021) 116872D-1 ...[Visit Journal] Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
2. | Multiple-band, Single-mode, High-power, Phase-locked, Mid-infrared Quantum Cascade Laser Arrays Manijeh Razeghi, Wenjia Zhou, Quanyong Lu, Donghai Wu, and Steven Slivken Imaging and Applied Optics 2018, JTh1A.2-- September 15, 2018 ...[Visit Journal] Single-mode, 16-channel, phase-locked laser arrays based on quantum cascade laser technology are demonstrated at multiple spectral bands across the mid-infrared spectrum region. High peak output power of 50W is achieved around the long-wavelength band of 7.7µm, while a side mode suppression ratio over 25dB is obtained. Far field distribution measurement result indicates a uniform phase distribution across the array output. [reprint (PDF)] |
2. | Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors Ryan McClintock ; Manijeh Razeghi Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015 ...[Visit Journal] AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress.
In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. [reprint (PDF)] |
2. | Polarity inversion of Type-II InAs/GaSb superlattice photodiodes B.M. Nguyen, D. Hoffman, P.Y. Delaunay, M. Razeghi and V. Nathan Applied Physics Letters, Vol. 91, No. 10, p. 103503-1-- September 3, 2007 ...[Visit Journal] The authors demonstrated the realization of p-on-n Type-II InAs/GaSb superlattice photodiodes. Growth condition for high quality InAsSb layer lattice matched to GaSb was established for the use of an effective n-contact layer. By studying the effect of various GaSb capping layer thicknesses on the optical and electrical performances, an optimized thickness of 160 nm was determined. In comparison to as grown n-on-p superlattice photodiodes, this inverted design of p on n has shown similar quality. Finally, by analyzing Fabry-Perot interference fringes in the front side illuminated spectral measurement, the refractive index of the superlattice was determined to be approximately 3.8. [reprint (PDF)] |
2. | Comprehensive study of blue and green multi-quantum-well light-emitting diodes grown on conventional and lateral epitaxial overgrowth GaN C. Bayram, J.L. Pau, R. McClintock and M. Razeghi Applied Physics B: Lasers and Optics, Vol. 95, p. 307-314-- November 29, 2008 ...[Visit Journal] Growths of blue and green multi-quantum wells (MQWs) and light-emitting diodes (LEDs) are realized on lateral epitaxial overgrowth (LEO) GaN, and compared with identical structures grown on conventional GaN. Atomic force microscopy is used to confirm the significant reduction of dislocations in the wing region of our LEO samples before active-region growth. Differences between surface morphologies of blue and green MQWs are analyzed. These MQWs are integrated into LEDs. All devices show a blue shift in the electroluminescence (EL) peak and narrowing in EL spectra with increasing injection current, both characteristics attributed to the band-gap renormalization. Green LEDs show a larger EL peak shift and a broader EL spectrum due to larger piezoelectric field and more indium segregation in the MQWs, respectively. Blue LEDs on LEO GaN show a higher performance than those on conventional GaN; however, no performance difference is observed for green LEDs on LEO GaN versus conventional GaN. The performance of the green LEDs is shown to be primarily limited by the active layer growth quality.
[reprint (PDF)] |
2. | Geiger-mode operation of back-illuminated GaN avalanche photodiodes J. L. Pau, R. McClintock, K. Minder, C. Bayram, P. Kung, M. Razeghi, E. Muñoz, and D. Silversmith Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 ...[Visit Journal] We report the Geiger-mode operation of back-illuminated GaN avalanche photodiodes fabricated on transparent AlN templates specifically for back illumination in order to enhance hole-initiated multiplication. The spectral response in Geiger-mode operation was analyzed under low photon fluxes. Single photon detection capabilities were demonstrated in devices with areas ranging from 225 to 14,063 µm2. Single photon detection efficiency of 20% and dark count rate < 10 kHz were achieved in the smallest devices. [reprint (PDF)] |
2. | High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal] A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix
and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured
to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low
dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was
achieved at −0.9 V bias [reprint (PDF)] |
2. | High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal] We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)] |
2. | Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, and M. Razeghi Applied Physics Letters 81 (5)-- July 29, 2002 ...[Visit Journal] We demonstrate light emission at 280 nm from UV light-emitting diodes consisting of AlInGaN/AlInGaN multiple quantum wells. Turn-on voltage of the devices is ~5 V with a differential resistance of ~40 Ω. The peak emission wavelength redshifts ~1 nm at high injection currents. [reprint (PDF)] |
2. | Quantum Dot Intersubband Photodetectors C. Jelen, M. Erdtmann, S. Kim, and M. Razeghi SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal] Quantum dots are recognized as very promising candidates for the fabrication of intersubband photodetectors in the infrared spectral range. At present, material quality is making rapid progress and some devices have been demonstrated. Examples of mid-infrared quantum dot intersubband photodetectors are presented along with device design and data analysis. Nonetheless, the performance of these devices remains less than comparable quantum well intersubband photodetectors due to difficulties in controlling the quantum dot size and distribution during epitaxy. [reprint (PDF)] |
Page 12 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|