Page 12 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12  13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

2.  Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays
M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock
SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 ...[Visit Journal]
Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. [reprint (PDF)]
 
2.  High performance monolithic, broadly tunable mid-infrared quantum cascade lasers
WENJIA Zhou, DONGHAI Wu, RYAN McCLINTOCK, STEVEN SLIVKEN, AND MANIJEH RAZEGH1
Optica 4(10), p. 1228-- October 10, 2017 ...[Visit Journal]
Mid-infrared lasers, emitting in the spectral region of 3-12 µm that contains strong characteristic vibrational tran­sitions of many important molecules, are highly desirable for spectroscopy sensing applications. High-efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning that is critical for spectroscopy applica­tions still largely relies on incorporating external gratings, which have stability issues. Here, we demonstrate a mono­lithic, broadly tunable quantum cascade laser source emitting between 6.1 and 9.2 µm through an on-chip integration of a sampled grating distributed feedback tunable laser array and a beam combiner. High peak power up to 65 mW has been obtained through a balanced high-gain active region design, efficient waveguide layout, and the development of a broad­band antireflection coating. Nearly fundamental transverse­mode operation is achieved for all emission wavelengths with a pointing stability better than 1.6 mrad (0.1 °). The demon­strated laser source opens new opportunities for mid-infrared spectroscopy. [reprint (PDF)]
 
2.  Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram, P. Kung and M. Razeghi
Applied Physics Letters, Vol. 90 No. 14, p. 141112-1-- April 2, 2007 ...[Visit Journal]
Avalanche p-i-n photodiodes were fabricated on AlN templates for back illumination. Structures with different intrinsic layer thicknesses were tested. A critical electric field of 2.73 MV/cm was estimated from the variation of the breakdown voltage with thickness. From the device response under back and front illumination and the consequent selective injection of holes and electrons in the junction, ionization coefficients were obtained for GaN. The hole ionization coefficient was found to be higher than the electron ionization coefficient as predicted by theory. Excess multiplication noise factors were also calculated for back and front illumination, and indicated a higher noise contribution for electron injection. [reprint (PDF)]
 
2.  GaN avalanche photodiodes grown on m-plane freestanding GaN substrate
Z. Vashaei, E. Cicek, C. Bayram, R. McClintock and M. Razeghi
Applied Physics Letters, Vol. 96, No. 20, p. 201908-1-- May 17, 2010 ...[Visit Journal]
M-plane GaN avalanche p-i-n photodiodes on low dislocation density freestanding m-plane GaN substrates were realized using metal-organic chemical vapor deposition. High quality homoepitaxial m-plane GaN layers were developed; the root-mean-square surface roughness was less than 1 Å and the full-width-at-half-maximum value of the x-ray rocking curve for (1010) diffraction of m-plane GaN epilayer was 32 arcsec. High quality material led to a low reverse-bias dark current of 8.11 pA for 225 μm² mesa photodetectors prior to avalanche breakdown, with the maximum multiplication gain reaching about 8000. [reprint (PDF)]
 
2.  Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy
S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi
Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal]
We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)]
 
2.  On the interface properties of ZnO/Si electroluminescent diodes
J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010 ...[Visit Journal]
ZnO layers grown on n–Si(100), n+–Si(100), and n–Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. [reprint (PDF)]
 
2.  Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs
J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi
Applied Physics Letters 71 (7)-- August 18, 1997 ...[Visit Journal]
The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. [reprint (PDF)]
 
2.  Gain-length scaling in quantum dot/quantum well infrared photodetectors
T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi
Applied Physics Letters, Vol. 95, No. 9-- August 31, 2009 ...[Visit Journal]
The gain in quantum dot/quantum well infrared photodetectors is investigated. The scaling of the gain with device length has been analyzed, and the behavior agrees with the previously proposed model. We conclude that we understand the gain in the low bias region, but in the high field region, discrepancies remain. An extension of the gain model is presented to cover the very high electric field region. The high field data are compared to the extended model and discussed. [reprint (PDF)]
 
2.  Investigation of 0.8 μm InGaAsP-GaAs laser diodes with Multiple Quantum Wells
J. Diaz, H. Yi, S. Kim, M. Erdtmann, L.J. Wang, I. Eliashevich, E. Bigan and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal]
In this paper, we studied the effects of the active region structure (one, two and three quantum wells with same total thickness) for high-power InGaAsP-GaAs separate confinement heterostructure lasers emitting at 0.8 μm wavelength. Experimental results for the lasers grown by low pressure metalorganic chemical vapor deposition show excellent agreement with the theoretical model. Total output power of 47 W from an uncoated 1 cm-wide laser bar was achieved in quasi-continuous wave operation [reprint (PDF)]
 
2.  Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi
Proc. SPIE 11687 (2021) 116872D-1 ...[Visit Journal]
Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)]
 
2.  GaN-based nanostructured photodetectors
J.L. Pau, C. Bayram, P. Giedraitis, R. McClintock, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-14-- January 26, 2009 ...[Visit Journal]
The use of nanostructures in semiconductor technology leads to the observation of new phenomena in device physics. Further quantum and non-quantum effects arise from the reduction of device dimension to a nanometric scale. In nanopillars, quantum confinement regime is only revealed when the lateral dimensions are lower than 50 nm. For larger mesoscopic systems, quantum effects are not observable but surface states play a key role and make the properties of nanostructured devices depart from those found in conventional devices. In this work, we present the fabrication of GaN nanostructured metal-semiconductor-metal (MSM) and p-i-n photodiodes (PIN PDs) by e-beam lithography, as well as the investigation of their photoelectrical properties at room temperature. The nanopillar height and diameter are about 520 nm and 200 nm, respectively. MSMs present dark currents densities of 0.4 A/cm2 at ±100 V. A strong increase of the optical response with bias is observed, resulting in responsivities higher than 1 A/W. The relationship between this gain mechanism and surface states is discussed. PIN PDs yield peak responsivities (Rpeak) of 35 mA/W at -4 V and show an abnormal increase of the response (Rpeak > 100 A/W) under forward biases. [reprint (PDF)]
 
2.  Type-II InAs/GaSb Superlattice Focal Plane Arrays for High-Performance Third Generation Infrared Imaging and Free-Space Communication
M. Razeghi, A. Hood and A. Evans
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Optoelectronic Integrated Circuits IX, Vol. 6476, p. 64760Q-1-9-- January 29, 2007 ...[Visit Journal]
Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high speed data networks providing highly secure, short to long range, and high bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's uptime. By moving the operating wavelength into the mid or long wavelength infrared enhanced link uptimes and increased range can be achieved due to less susceptibility atmospheric affects. The combination of room temperature, continuous wave' high power quantum cascade lasers and high operating temperature Type-II superlattice photodetectors offers the benefits of mid and long wavelength infrared systems as well as practical operating conditions. [reprint (PDF)]
 
2.  AlxGa1-xN for Solar-Blind UV Detectors
P. Sandvik, K. Mi, F. Shahedipour, R. McClintock, A. Yasan, P. Kung, and M. Razeghi
Journal of Crystal Growth 231 (2001)-- January 1, 2001 ...[Visit Journal]
We report on the metalorganic chemical vapor deposition of high quality AlGaN thin films on sapphire substrates over a wide range of Al concentrations. The quality of these AlGaN materials was verified through a demonstration of high performance visible and solar-blind UV p–i–n photodiodes with peak cutoff wavelengths ranging from 227 to 364 nm. External quantum efficiencies for these devices reached as high as 69% with over five orders rejection ratio from the peak to visible wavelengths. [reprint (PDF)]
 
2.  Very High Average Power at Room Temperature from λ ~ 5.9 μm Quantum Cascade Lasers
J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi
Applied Physics Letters, 82 (20)-- May 19, 2003 ...[Visit Journal]
We report a very high average output power at room temperature for quantum-cascade lasers emitting at λ ~ 5.9 µm. For high-reflectivity-coated 2-mm-long cavities, a low threshold current density of 1.7 kA/cm2 was obtained at room temperature. From 300 to 400 K, the characteristic temperature (T0) was 198 K. A maximum average output power of 0.67 W was achieved. In addition, 0.56 W average output power was observed at a duty cycle of 56%. [reprint (PDF)]
 
2.  Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 7, Article number: 3379-- June 13, 2017 ...[Visit Journal]
Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)]
 
2.  Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems
M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock
Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal]
Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)]
 
2.  Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects
Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow
SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal]
The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)]
 
2.  Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications
J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown
Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal]
Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)]
 
2.  Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates
C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal]
InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76  200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures.   [reprint (PDF)]
 
2.  High operating temperature 320 x 256 middle-wavelength infrared focal plane array imaging based on an InAs/InGaAs/InAlAs/InP quantum dot infrared photodetector
S. Tsao, H. Lim, W. Zhang, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology-- May 28, 2007 ...[Visit Journal][reprint (PDF)]
 
2.  Crack-free AlGaN for solar-blind focal plane arrays through reduced area expitaxy
E. Cicek, R. McClintock, Z. Vashaei, Y. Zhang, S. Gautier, C.Y. Cho and M. Razeghi
Applied Physics Letters, Vol. 102, No. 05, p. 051102-1-- February 4, 2013 ...[Visit Journal]
We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1−xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ∼97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging. [reprint (PDF)]
 
2.  High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices
M. Razeghi; A. Haddadi; A.M. Hoang; G. Chen; S. Ramezani-Darvish; P. Bijjam
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87040S (June 11, 2013)-- June 11, 2013 ...[Visit Journal]
We report a bias selectable dual-band mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector's electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature's 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)]
 
2.  Solar-blind avalanche photodiodes
R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal]
There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)]
 
2.  The Molecular Beam Epitaxial Growth of InSb on (111) GaAs
E. Michel, J. Kim, J. Xu, S. Javadpour, I. Ferguson, and M. Razeghi
Applied Physics Letters 69 (2)-- July 8, 1996 ...[Visit Journal]
The molecular beam epitaxial growth of InSb on (111)B GaAs has been investigated. It was found that for a given Sb/In ratio, a higher growth temperature was required for the growth of InSb on (111)B GaAs compared to that on (001) GaAs. This difference has been attributed to the bonding characteristics of the (111)B and (001) surface. Once growth had been optimized, it was found that the material characteristics of (111)B InSb were almost identical to that of (001) InSb, i.e., independent of orientation. For example, the x-ray full width at half-maximum and 300 K mobility had the same absolute values for (111) InSb and (001)InSb and followed the same dependence with the sample thickness. Te was found to be a well-behaved n-type dopant for (111)B InSb. [reprint (PDF)]
 
2.  High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011 ...[Visit Journal]
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. [reprint (PDF)]
 

Page 12 of 27:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12  13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)