| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 12 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (514 Items)
| 1. | Recent advances in III-Nitride materials, characterization and device applications M. Razeghi, X. Zhang, P. Kung, A. Saxler, D. Walker, K.Y. Lim, and K.S. Kim SPIE Conference: Solid State Crystals in Optoelectronics and Semiconductor Technology; Proceedings 3179-- October 7, 1996 ...[Visit Journal] High-quality AlN, GaN, AlGaN have been grown on sapphire substrate by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The x-ray rocking curve of AlN and GaN were 100 arcsecs and 30 arcsecs respectively with Pendelloesung oscillations, which are the best reported to date. GaN with high crystallinity simultaneously exhibited high optical and electrical quality. Photoluminescence linewidth of GaN at 77K was as low as 17 meV, which is the best reported to date. Si-doped GaN had a mobility higher than 300 cm²/V·s. GaN has been also successfully grown on LiGaO2 substrate with LP-MOCVD for the first time. AlGaN for the entire composition range has been grown. These layers exhibited the lowest x-ray FWHM reported to date. The excellent optical quality of these layers have been characterized by room temperature UV transmission and photoluminescence. N-type doping of AlGaN with Si has ben achieved up to 60 percent Al with mobility as high as 78 cm²/V·s. AlxGa1-xN/AlyGa1-yN superlattice with atomically sharp interface have been demonstrated. Optically-pumped stimulated emission in GaN:Ge and GaN:Si has been observed with threshold optical power density as low as 0.4 MW/cm². AlGaN photoconductors with cut-off wavelengths from 200 nm to 365 nm have been achieved for the first time. GaN p-n junction photovoltaic detector with very selective photoresponse have been demonstrated and theoretically modeled. Ti/AlN/Si metal-insulator- semiconductor capacitor with high capacitance-voltage performances at both low and high frequencies and low interface trap level density have been demonstrated for the first time in this material system. [reprint (PDF)] |
| 1. | Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 101, No. 25, p. 251121-1-- December 17, 2012 ...[Visit Journal] We demonstrate room temperature THz quantum cascade laser sources with a broad spectral coverage based on intracavity difference-frequency generation. Two mid-infrared active cores based on the single-phonon resonance scheme are designed with a THz nonlinearity specially optimized at the high operating fields that correspond to the highest mid-infrared output powers. A Čerenkov phase-matching scheme along with integrated dual-period distributed feedback gratings are used for efficient THz extraction and spectral purification. Single mode emissions from 1.0 to 4.6 THz with a side-mode suppression ratio and output power up to 40 dB and 32 μW are obtained, respectively. [reprint (PDF)] |
| 1. | Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal] The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)] |
| 1. | Avalanche Photodetector Based on InAs/InSb Superlattice Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal] This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)] |
| 1. | InTlSb alloys for infrared detection E. Bigan, Y.H. Choi, G. Labeyrie, and M. Razeghi Proceedings, SPIE Nonlinear Optics for High-Speed Electronics and Optical Frequency Conversion, Vol. 2145-- January 24, 1994 ...[Visit Journal] InTISb alloys have been grown by low-pressure metalorganic chemical vapor deposition, and characterized. Photoconductors exhibit a cutoff wavelength that can be tailored from 5.5 μm up to 9 μm by varying the thallium content. Experimental observations suggest that this can be further extended by increasing the thallium content. An InTISb photoconductor having a 9 μm cutoff wavelength exhibited a D* of 109 cm·Hz½·W-1 at 7 μm operating wavelength. [reprint (PDF)] |
| 1. | Electrically pumped photonic crystal distributed feedback quantum cascade lasers Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal] We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature.
[reprint (PDF)] |
| 1. | Comparison of chemical and laser lift-off for the transfer of InGaN-based p-i-n junctions from sapphire to glass substrates D. J. Rogers ; P. Bove ; F. Hosseini Teherani ; K. Pantzas ; T. Moudakir ; G. Orsal ; G. Patriarche ; S. Gautier ; A. Ougazzaden ; V. E. Sandana ; R. McClintock ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 862611 (March 18, 2013)-- March 18, 2013 ...[Visit Journal] InGaN-based p-i-n structures were transferred from sapphire to soda-lime glass substrates using two approaches: (1) laser-lift-off (LLO) and thermo-metallic bonding and (2) chemical lift-off (LLO) by means sacrificial ZnO templates and direct wafer bonding. Both processes were found to function at RT and allow reclaim of the expensive single crystal substrate. Both approaches have also already been demonstrated to work for the wafer-scale transfer of III/V semiconductors. Compared with the industry-standard LLO, the CLO offers the added advantages of a lattice match to InGaN with higher indium contents, no need for an interfacial adhesive layer (which facilitates electrical, optical and thermal coupling), no damaged/contaminated GaN surface layer, simplified sapphire reclaim (GaN residue after LLO may complicate reclaim) and cost savings linked to elimination of the expensive LLO process. [reprint (PDF)] |
| 1. | High performance InAs quantum dot infrared photodetectors (QDIP) on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, S. Tsao, J. Szafraniec, B. Movaghar, M. Razeghi, and M. Tidrow SPIE Conference, Jose, CA, Vol. 5732, pp. 326-- January 22, 2005 ...[Visit Journal] Inter-subband detectors such as quantum well infrared photodetectors (QWIP) have been widely used in infrared detection. Quantum dot infrared photodetectors (QDIPs) have been predicted to have better performance than QWIPs including higher operation temperature and normal incidence detection. Here we report our recent results of InAs QDIP grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD). The device structures consist of multiple stacks of InAs quantum dots with InP barriers. High detectivities in the range of 1010cm·Hz1/2/W were obtained at 77K. The measurements at higher temperatures show better temperature dependent performance than QWIP. However, the performances of QDIPs are still far from the expected. One of the reasons is the low quantum efficiency due to the low fill factor of quantum dots layer. Resonant cavity enhanced QDIP has been studied to increase the quantum efficiency. Different schemes of mirrors using free carrier plasma and distributed Bragg reflector are discussed. [reprint (PDF)] |
| 1. | High-brightness LWIR quantum cascade lasers F. Wang, S. Slivken, and M. Razeghi F. Wang, S. Slivken, and M. Razeghi, High-brightness LWIR quantum cascade lasers, Optics Letters, vol. 46, No. 20, 5193 ...[Visit Journal] Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range. [reprint (PDF)] |
| 1. | Electrically pumped photonic crystal distributed feedback quantum cascade lasers Y. Bai, P. Sung, S.R. Darvish, W. Zhang, A. Evans, S. Slivken, and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000A-1-8.-- February 1, 2008 ...[Visit Journal] We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~ 4.75 µm. Ridge waveguides of 50 µm and 100 µm width were fabricated with both PCDFB and Fabry-Perot feedback mechanisms. The Fabry-Perot device has a broad emitting spectrum and a broad far-field character. The PCDFB devices have primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half-maximum of 4.8 degrees and 2.4 degrees for the 50 µm and 100 µm ridge widths, respectively.
[reprint (PDF)] |
| 1. | Solar-blind AlGaN photodiodes with very low cutoff wavelength D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi Applied Physics Letters 76 (4)-- January 24, 2000 ...[Visit Journal] We report the fabrication and characterization of AlxGa1–xN photodiodes (x~0.70) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The peak responsivity for –5 V bias is 0.11 A/W at 232 nm, corresponding to an internal quantum efficiency greater than 90%. The device response drops four orders of magnitude by 275 nm and remains at low response for the entire near-ultraviolet and visible spectrum. Improvements were made to the device design including a semitransparent Ni/Au contact layer and a GaN:Mg cap layer, which dramatically increased device response by enhancing the carrier collection efficiency. [reprint (PDF)] |
| 1. | Optoelectronic Integrated Circuits (OEICs) for Next Generation WDM Communications M. Razeghi and S. Slivken SPIE Conference, Boston, MA, -- July 29, 2002 ...[Visit Journal] This paper reviews some of the key enabling technologies for present and future optoelectronic intergrated circuits. This review concentrates mainly on technology for lasers, waveguides, modulators, and fast photodetectors as the basis for next generation communicatiosn systems. Emphasis is placed on intergrations of components and mass production of a generic intelligent tranciever. [reprint (PDF)] |
| 1. | High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal] We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)] |
| 1. | The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal] A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)] |
| 1. | Dark current reduction in microjunction-based compound electron barrier type-II InAs/InAs1-xSbx superlattice-based long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV Page. 1054007-1-- January 26, 2018 ...[Visit Journal] Reduction of dark current density in microjunction-based InAs/InAs1-xSbx type-II superlattice long-wavelength infrared photodetectors was demonstrated. A double electron barrier design was used to suppress both generation-recombination and
surface dark currents. The photodetectors exhibited high surface resistivity after passivation with SiO2, which permits the use of small size features without having strong surface leakage current degrading the electrical performance. Fabricating a
microjunction structure (25×25 μm² mesas with 10×10 μm² microjunctions) with this photodetector double barrier design results in a dark current density of 6.3×10-6 A/cm² at 77 K. The device has an 8 μm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 μm-thick absorption region, which results in a specific detectivity value of 1.2×1012 cm·Hz1/2/W at 77 K. [reprint (PDF)] |
| 1. | RT-CW: widely tunable semiconductor THz QCL sources M. Razeghi; Q. Y. Lu Proceedings Volume 9934, Terahertz Emitters, Receivers, and Applications, 993406-1-- September 26, 2017 ...[Visit Journal] Distinctive position of Terahertz (THz) frequencies (ν~0.3 -10 THz) in the electromagnetic spectrum with their lower quantum energy compared to IR and higher frequency compared to microwave range allows for many potential applications unique to them. Especially in the security side of the THz sensing applications, the distinct absorption spectra of explosives and related compounds in the range of 0.1–5 THz makes THz technology a competitive technique for detecting hidden explosives. A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range will greatly boost the THz applications for the diagnosis and detection of explosives. Here we present a new strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based intracavity DFG. Room temperature continuous wave operation with electrical frequency tuning range of 2.06-4.35 THz is demonstrated [reprint (PDF)] |
| 1. | Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 435, Pages 105-109-- November 7, 2015 ...[Visit Journal] p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry
standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. [reprint (PDF)] |
| 1. | Ultraviolet avalanche photodiodes Ryan McClintock ; Manijeh Razeghi Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550B -- August 28, 2015 ...[Visit Journal] The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields – typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts.
In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. [reprint (PDF)] |
| 1. | Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2substrates P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi Applied Physics Letters 69 (14)-- September 30, 1996 ...[Visit Journal] We report the metalorganic chemical vapor deposition growth and characterization of monocrystalline GaN thin films on β-LiGaO2 substrates. The influence of the growth temperature on the crystal quality was studied. The structural, electrical, and optical properties of the films were assessed through scanning electron microscopy, x-ray diffraction, Hall measurements, optical transmission, photoluminescence. [reprint (PDF)] |
| 1. | Fabrication of Indium Bumps for Hybrid Infrared Focal Plane Array Applications J. Jiang, S. Tsao, T. O'Sullivan, M. Razeghi, and G.J. Brown Infrared Physics and Technology, 45 (2)-- March 1, 2004 ...[Visit Journal] Hybrid infrared focal plane arrays (FPAs) have found many applications. In hybrid IR FPAs, FPA and Si read out integrated circuits (ROICs) are bonded together with indium bumps by flip-chip bonding. Taller and higher uniformity indium bumps are always being pursued in FPA fabrication. In this paper, two indium bump fabrication processes based on evaporation and electroplating techniques are developed. Issues related to each fabrication technique are addressed in detail. The evaporation technique is based on a unique positive lithography process. The electroplating method achieves taller indium bumps with a high aspect ratio by a unique “multi-stack” technique. This technique could potentially benefit the fabrication of multi-color FPAs. Finally, a proposed low-cost indium bump fabrication technique, the “bump transfer”, is given as a future technology for hybrid IR FPA fabrication. [reprint (PDF)] |
| 1. | Gain-length scaling in quantum dot/quantum well infrared photodetectors T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi Applied Physics Letters, Vol. 95, No. 9-- August 31, 2009 ...[Visit Journal] The gain in quantum dot/quantum well infrared photodetectors is investigated. The scaling of the gain with device length has been analyzed, and the behavior agrees with the previously proposed model. We conclude that we understand the gain in the low bias region, but in the high field region, discrepancies remain. An extension of the gain model is presented to cover the very high electric field region. The high field data are compared to the extended model and discussed. [reprint (PDF)] |
| 1. | Photovoltaic MWIR type-II superlattice focal plane array on GaAs substrate E.K. Huang, P.Y. Delaunay, B.M. Nguyen, S. Abdoullahi-Pour, and M. Razeghi IEEE Journal of Quantum Electronics (JQE), Vol. 46, No. 12, p. 1704-1708-- December 1, 2010 ...[Visit Journal] Recent improvements in the performance of Type-II superlattice (T2SL) photodetectors has spurred interest in developing low cost and large format focal plane arrays (FPA) on this material system. Due to the limitations of size and cost of native GaSb substrates, GaAs is an attractive alternative with 8” wafers commercially available, but is 7.8% lattice mismatched to T2SL. In this paper, we present a photovoltaic T2SL 320 x 256 focal plane array (FPA) in the MWIR on GaAs substrate. The FPA attained a median noise equivalent temperature difference (NEDT) of 13 mK and 10mK (F#=2.3) with integration times of 10.02 ms and 19.06 ms respectively at 67 K. [reprint (PDF)] |
| 1. | High-quality visible-blind AlGaN p-i-n photodiodes E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sanchez, and M. Razeghi Applied Physics Letters 74 (8)-- February 22, 1999 ...[Visit Journal] We report the fabrication and characterization of AlxGa1−xN p-i-n photodiodes (0 < x < 0.15) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The devices present a visible rejection of six orders of magnitude with a cutoff wavelength that shifts from 365 to 338 nm. Photocurrent decays are exponential for high load resistances, with a time constant that corresponds to the RC product of the system. For low load resistances, the transient response becomes non-exponential, with a decay time longer than the RC constant. This behavior is justified by the strong frequency dependence of the device capacitance. By an admittance analysis, we conclude that speed is not limited by deep levels, but by substitutional Mg capture and emission time. [reprint (PDF)] |
| 1. | High operating temperature MWIR photon detectors based on Type-II InAs/GaSb superlattice M. Razeghi, B.M. Nguyen, P.Y. Delaunay, S. Abdollahi Pour, E.K.W. Huang, P. Manukar, S. Bogdanov, and G. Chen SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76081Q-1-- January 22, 2010 ...[Visit Journal] Recent efforts have been paid to elevate the operating temperature of Type-II InAs/GaSb superlattice Mid Infrared photon detectors. Optimized growth parameters and interface engineering technique enable high quality material with a quantum efficiency above 50%. Intensive study on device architecture and doping profile has resulted in almost one order of magnitude of improvement to the electrical performance and lifted up the 300 K-background BLIP operation temperature to 166 K. At 77 K, the ~4.2 µm cut-off devices exhibit a differential resistance area product in excess of the measurement system limit (106 Ω·cm²) and a detectivity of 3x1013 cm·Hz½·W−1. High quality focal plane arrays were demonstrated with a noise equivalent temperature of 10 mK at 77 K. Uncooled camera is capable to capture hot objects such as soldering iron. [reprint (PDF)] |
| 1. | Passivation of Type-II InAs/GaSb superlattice photodetectors A. Hood, Y. Wei, A. Gin, M. Razeghi, M. Tidrow, and V. Nathan SPIE Conference, Jose, CA, Vol. 5732, pp. 316-- January 22, 2005 ...[Visit Journal] Leakage currents limit the operation of high performance Type-II InAs/GaSb superlattice photodiode technology. Surface leakage current becomes a dominant limiting factor, especially at the scale of a focal plane array pixel (< 25 µm) and must be addressed. A reduction of the surface state density, unpinning the Fermi level at the surface, and appropriate termination of the semiconductor crystal are all aims of effective passivation. Recent work in the passivation of Type-II InAs\GaSb superlattice photodetectors with aqueous sulfur-based solutions has resulted in increased R0A products and reduced dark current densities by reducing the surface trap density. Additionally, photoluminescence of similarly passivated Type-II InAs/GaSb superlattice and InAs GaSb bulk material will be discussed. [reprint (PDF)] |
Page 12 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (514 Items)
|