| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 12 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (468 Items)
| 1. | Capacitance-voltage investigation of high purity InAs/GaSb superlattice photodiodes A. Hood, D. Hoffman, Y. Wei, F. Fuchs, and M. Razeghi Applied Physics Letters 88 (6)-- February 6, 2006 ...[Visit Journal] The residual carrier backgrounds of binary type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths around 5 μm have been studied in the temperature range between 20 and 200 K. By applying a capacitance-voltage measurement technique, a residual background concentration below 1015 cm–3 has been found. [reprint (PDF)] |
| 1. | 8-13 μm InAsSb heterojunction photodiode operating at near room temperature J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal] p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)] |
| 1. | Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal] Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)] |
| 1. | Stable single mode terahertz semiconductor sources at room temperature M. Razeghi 2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal] Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)] |
| 1. | Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal] We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)] |
| 1. | Passivation of Type-II InAs/GaSb Superlattice Photodiodes A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004 ...[Visit Journal] Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. [reprint (PDF)] |
| 1. | Long Wavelength Type-II Photodiodes Operating at Room Temperature H. Mohseni and M. Razeghi IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
| 1. | Aluminum nitride films on different orientations of sapphire and silicon K. Dovidenko, S. Oktyabrsky, J. Narayan, and M. Razeghi Journal of Applied Physics79 (5)-- March 1, 1996 ...[Visit Journal] The details of epitaxial growth and microstrictural characteristics of AlN films grown on sapphire (0001), (1012) and Si (100), (111) substrates were investigated using plan‐view and cross‐sectional high‐resolution transmission electron microscopy and x‐ray diffraction techniques. The films were grown by metalorganic chemical vapor deposition using TMA1+NH3+N2 gas mixtures. Different degrees of epitaxy were observed for the films grown on α‐Al2O3 and Si substrates in different orientations. The epitaxial relationship for (0001) sapphire was found to be (0001)AlN∥(0001)sap with in‐plane orientation relationship of [0110]AlN∥[1210]sap. This is equivalent to a 30° rotation in the basal (0001) plane. For (1012) sapphire substrates, the epitaxial relationship was determined to be (1120)AlN∥(1012)sap with the in‐plane alignment of [0001]AlN∥[1011]sap. The AlN films on (0001) α‐Al2O3 were found to contain inverted domain boundaries and a/3〈1120〉 threading dislocations with the estimated density of 1010 cm−2. The density of planar defects (stacking faults) found in AlN films was considerably higher in the case of (1012) compared to (0001) substrates. Films on Si substrates were found to be highly textured c axis oriented when grown on (111) Si, and c axis textured with random in‐plane orientation on (100) Si. The role of thin‐film defects and interfaces on device fabrication is discussed. [reprint (PDF)] |
| 1. | Room Temperature Operation of InTlSb Infrared Photodetectors on GaAs J.D. Kim, E. Michel, S. Park, J. Xu, S. Javadpour and M. Razeghi Applied Physics Letters 69 (3)-- August 15, 1996 ...[Visit Journal] Long-wavelength InTlSb photodetectors operating at room temperature are reported. The photo- detectors were grown on (100) semi-insulating GaAs substrates by low-pressure metalorganic chemical vapor deposition. Photoresponse of InTlSb photodetectors is observed up to 11 µm at room temperature. The maximum responsivity of an In0.96Tl0.04Sb photodetector is about 6.64 V/W at 77 K, corresponding to a detectivity of about 7.64 × 108 cm·Hz½/W. The carrier lifetime in InTlSb photodetectors derived from the stationary photoconductivity is 10–50 ns at 77 K. [reprint (PDF)] |
| 1. | High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal] We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)] |
| 1. | Monolithic, steerable, mid-infrared laser realized with no moving parts Slivken S, Wu D, Razeghi M Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal] The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)] |
| 1. | Intermixing of GaInP/GaAs Multiple Quantum Wells C. Francis, M.A. Bradley, P. Boucaud, F.H. Julien and M. Razeghi Applied Physics Letters 62 (2)-- January 11, 1993 ...[Visit Journal] The intermixing of GaInP‐GaAs superlattices induced by a heat treatment is investigated as a function of the annealing temperature and duration. Photoluminescence experiments reveal a large red shift of the effective band gap of the annealed quantum wells thus indicating a dominant self‐diffusion of the group III atoms which is confirmed by secondary ion mass spectroscopic measurements. For long enough annealing durations, the red shift saturates and even decreases due to the competing slower self‐diffusion of the group V atoms. Experiments are well understood based on a simple diffusion model. [reprint (PDF)] |
| 1. | First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate M. Razeghi; M. Defour; R. Blondeau; F. Omnes; P. Maurel; O. Acher; F. Brillouet; J. C. C‐Fan; J. Salerno Appl. Phys. Lett. 53, 2389–2390 (1988) -- December 12, 1988 ...[Visit Journal] We report the first successful room-temperature cw operations of a GaO.
25 1110.75 ASo.
5 po.
s -InP
buried ridge structure laser emitting at 1.3 f-tm grown by two-step low-pressure metalorganic
chemical vapor deposition on a silicon substrate. An output power of 20 m W with an external
quantum efficiency of 16% at room temperature has been obtained. A threshold current as low
as 45 rnA under cw operation at room temperature has been measured. The first cw aging test
at room temperature, at 2 mW during 5 h, shows a very low degradation (Ill 11,;;5%).
[reprint (PDF)] |
| 1. | Tl incorporation in InSb and lattice contraction of In1-xTlxSb J.J. Lee and M. Razeghi Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal] Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)] |
| 1. | Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 435, Pages 105-109-- November 7, 2015 ...[Visit Journal] p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry
standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. [reprint (PDF)] |
| 1. | High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi Appl. Phys. Lett. 116, 161108-- April 21, 2020 ...[Visit Journal] We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. [reprint (PDF)] |
| 1. | Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal] Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)] |
| 1. | Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation F. Wang, S. Slivken, D. H. Wu, and M. Razeghi Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal] We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage.
[reprint (PDF)] |
| 1. | Photoconductance measurements on InTlSb/InSb/GaAs grown by low-pressure metalorganic chemical vapor deposition P.T. Staveteig, Y.H. Choi, G. Labeyrie, E. Bigan, and M. Razeghi Applied Physics Letters 64 (4)-- January 24, 1994 ...[Visit Journal] We report infrared photoconductors based on InTlSb/InSb grown by low‐pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The photoresponse spectrum extends up to 8 μm at 77 K. The absolute magnitude of the photoresponse is measured as a function of bias. The specific detectivity is estimated to be 3×108 Hz½·cm·W-1 at 7 μm wavelength. [reprint (PDF)] |
| 1. | High performance quantum dot-quantum well infrared focal plane arrays S. Tsao, A. Myzaferi, and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050J-1-- January 27, 2010 ...[Visit Journal] Quantum dot (QD) devices are a promising technology for high operating temperature detectors. We have studied InAs QDs embedded in an InGaAs/InAlAs quantum well structure on InP substrate for middle wavelength infrared detectors and focal plane arrays (FPAs). This combined dot-well structure has weak dot confinement of carriers, and as a result, the device behavior differs significantly from that in more common dot systems with stronger confinement. We report on our studies of the energy levels in the QDWIP devices and on QD-based detectors operating at high temperature with D* over 1010 cm·Hz½/W at 150 K operating temperature and high quantum efficiency over 50%. FPAs have been demonstrated operating at up to 200 K. We also studied two methods of adapting the QDWIP device to better accommodate FPA readout circuit limitations. [reprint (PDF)] |
| 1. | Recent advances in high performance antimonide-based superlattice FPAs E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal] Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)] |
| 1. | Characteristics of high quality p-type AlxGa1-xN/GaN superlattices A. Yasan, R. McClintock, S.R. Darvish, Z. Lin, K. Mi, P. Kung, and M. Razeghi Applied Physics Letters 80 (12)-- March 18, 2002 ...[Visit Journal] Very-high-quality p-type AlxGa1–xN/GaN superlattices have been grown by low-pressure metalorganic vapor-phase epitaxy through optimization of Mg flow and the period of the superlattice. For the superlattice with x = 26%, the hole concentration reaches a high value of 4.2×1018 cm–3 with a resistivity as low as 0.19 Ω · cm by Hall measurement. Measurements confirm that superlattices with a larger period and higher Al composition have higher hole concentration and lower resistivity, as predicted by theory. [reprint (PDF)] |
| 1. | Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys M. Razeghi, J.P. Duchemin M. Razeghi, J.P. Duchemin, Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys, Journal of Crystal Growth, Volume 70, Issues 1–2, 1984, Pages 145-149,-- December 1, 1984 ...[Visit Journal] The low pressure metalorganic chemical vapour deposition (LPMOCVD) growth of GaxIn1-xAsyP1-y-InP lattice matched system, with high mobilities, sharp interfaces, low background doping densities, and the formation of a two-dimensional electron gas (2DEG) at the interfaces, has recently made spectacular advances, as in evidenced by the availability of high quality DH lasers, PIN photodiodes, and Gunn diodes. We present here some new results obtained on the above-mentioned material and devices. [reprint (PDF)] |
| 1. | Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition M. Razeghi; P‐L. Meunier; P. Maurel M. Razeghi, P‐L. Meunier, P. Maurel; Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition. J. Appl. Phys. 15 March 1986; 59 (6): 2261–2263-- March 15, 1986 ...[Visit Journal] Ga0.47In0.53As‐InP multiquantum wells grown by low‐pressure metalorganic chemical vapor deposition on garnet (GGG=Gd3Ga5O12 with a=12.383 Å) substrates are presented for the first time. The x‐ray diffraction pattern shows that the orientation of the epitaxial layer is (111) while the underlying substrate orientation is (100). The photoluminescence at 77 K is due to the GaInAs layers. [reprint (PDF)] |
| 1. | Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi Applied Physics Letters, Vol. 93, No. 12, p. 123502-1-- September 22, 2008 ...[Visit Journal] The utilization of the P+-pi-M-N+ photodiode architecture in conjunction with a thick active region can significantly improve long wavelength infrared Type-II InAs/GaSb superlattice photodiodes. By studying the effect of the depletion region placement on the quantum efficiency in a thick structure, we achieved a topside illuminated quantum efficiency of 50% for an N-on-P diode at 8.0 µm at 77 K. Both the double heterostructure design and the application of polyimide passivation greatly reduce the surface leakage, giving an R0A of 416 Ω·cm2 for a 1% cutoff wavelength of 10.52 µm, a Shot–Johnson detectivity of 8.1×1011 cm·Hz½/W at 77 K, and a background limited operating temperature of 110 K with 300 K background. [reprint (PDF)] |
Page 12 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (468 Items)
|