| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 12 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (474 Items)
| 1. | Pulse Autocorrelation Measurements Based on Two- and Three-Photon Conductivity in a GaN Photodiode A. Streltsov, K.D. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi Applied Physics Letters 75 (24)-- December 13, 1999 ...[Visit Journal] We characterize the performance of a GaN p-i-n photodiode as a nonlinear sensor for second- and third-order femtosecond pulse autocorrelation measurements in the visible and near-infrared regimes, respectively. The two- and three-photon absorption coefficients for GaN are also determined. [reprint (PDF)] |
| 1. | High-quality MOCVD-grown heteroepitaxial gallium oxide growth on III-nitrides enabled by AlOx interlayer Junhee Lee, Lakshay Gautam, and Manijeh Razeghi Junhee Lee, Manijeh RazeghiAppl. Phys. Lett. 123, 151902 (2023) https://doi.org/10.1063/5.0170383 ...[Visit Journal] We report high-quality Ga2O3 grown on an AlGaN/AlN/Sapphire in a single growth run in the same Metal Organic Chemical Vapor
Deposition reactor with an AlOx interlayer at the Ga2O3/AlGaN interface. AlOx interlayer was found to enable the growth of single crystalline
Ga2O3 on AlGaN in spite of the high lattice mismatch between the two material systems. The resulting nitride/oxide heterogenous heterostructures showed superior material qualities, which were characterized by structural, electrical, and optical characterization techniques. In
particular, a significant enhancement of the electron mobility of the nitride/oxide heterogenous heterostructure is reported when compared
to the individual electron mobilities of the Ga2O3 epilayer on the sapphire substrate and the AlGaN/AlN heterostructure on the sapphire substrate. This enhanced mobility marks a significant step in realizing the next generation of power electronic devices and transistors. [reprint (PDF)] |
| 1. | Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output Q.Y. Lu, Y. Bai, N. Bandyopadhyay, Sl Slivken, and M. Razeghi Applied Physics Letters, Vol. 97, No. 23, p. 231119-1-- December 6, 2010 ...[Visit Journal] We demonstrate surface-grating distributed feedback quantum cascade lasers (QCLs) with a watt-level power output at 4.75 μm. A device with a 5 mm cavity length exhibits an output power of 1.1 W in room-temperature cw operation. Single-mode operation with a side mode suppression ratio of 30 dB is obtained in the working temperature of 15–105 °C. A double-lobed far field with negligible beam steering is observed. The significance of this demonstration lies in its simplicity and readiness to be applied to standard QCL wafers with the promise of high-power performances. [reprint (PDF)] |
| 1. | Photovoltaic effects in GaN structures with p-n junction X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi Applied Physics Letters 67 (14)-- October 2, 1995 ...[Visit Journal] Large-area GaN photovoltaic structures with p-n junctions have been fabricated using atmospheric pressure metalorganic chemical vapor deposition. The photovoltaic devices typically exhibit selective spectral characteristics with two narrow peaks of opposite polarity. This can be related to p-n junction connected back‐to‐back with a Schottky barrier. The shape of the spectral characteristic is dependent on the thickness of the n- and p-type regions. The diffusion length of holes in the n-type GaN region, estimated by theoretical modeling of the spectral response shape, was about 0.1 μm. [reprint (PDF)] |
| 1. | Persistent photoconductivity in thin undoped GaInP/GaAs quantum wells S. Elhamri, M. Ahoujja, K. Ravindran, D.B. Mast, R.S. Newrock, W.C. Mitchel, G.J. Brown, I. Lo, M. Razeghi and X. He Applied Physics Letters 66 (2)-- January 9, 1995 ...[Visit Journal] Persistent photoconductivity has been observed at low temperatures in thin, unintentionally doped GaInP/GaAs/GaInP quantum wells. The two‐dimensional electron gas was studied by low field Hall and Shubnikov–de Haas effects. After illumination with red light, the electron concentration increased from low 1011 cm−2 to more than 7×1011 cm−2 resulting in an enhancement of both the carrier mobility and the quantum lifetime. The persistent photocarriers cannot be produced by DX-like defects since the shallow dopant concentration in the GaInP layers is too low to produce the observed concentration. We suggest that the persistent carriers are produced by photoionization of deep intrinsic donors in the GaInP barrier layer. We also report observation of a parallel conduction path in GaInP induced by extended illumination. [reprint (PDF)] |
| 1. | Tight-binding theory for the thermal evolution of optical band gaps in semiconductors and superlattices S. Abdollahi Pour, B. Movaghar, and M. Razeghi American Physical Review, Vol. 83, No. 11, p. 115331-1-- March 15, 2011 ...[Visit Journal] A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors and superlattices using an empirical tight-binding method has been developed. The approach follows closely established procedures and allows parameter variations which give rise to perfect fits to the experimental data. We also apply the tight-binding method to the far more complex problem of band structures in Type-II infrared superlattices for which we have access to original experimental data recently acquired by our group. Given the close packing of bands in small band-gap Type-II designs, k·p methods become difficult to handle, and it turns out that the sp3s* tight-binding scheme is a practical and powerful asset. Other approaches to band-gap shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term, the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory. [reprint (PDF)] |
| 1. | Solar-blind avalanche photodiodes R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal] There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)] |
| 1. | Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates E. Cicek, Z. Vashaei, C. Bayram, R. McClintock, M. Razeghi and M. Ulmer Proceedings, Vol. 7780, p. 77801P, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal] There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultiplier tubes. In this paper, we review the current state-of-the-art in IIINitride visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. [reprint (PDF)] |
| 1. | Background limited performance of long wavelength infrared focal plane arrays fabricated from type-II InAs/GaSb M-structure superlattice P.Y. Delaunay, B.M. Nguyen and M. Razeghi SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981Q-- April 13, 2009 ...[Visit Journal] Recent advances in growth techniques, structure design and processing have lifted the performance of
Type-II InAs/GaSb superlattice photodetectors. The introduction of a M-structure design improved both the dark current and R0A of Type-II photodiodes. This new structure combined with a thick absorbing region demonstrated background limited performance at 77K for a 300K background and a 2-π field of view. A focal plane array with a 9.6 μm 50% cutoff wavelength was fabricated with this design and characterized at 80K. The dark current of individual pixels was measured around 1.3 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency
of detectors without anti-reflective coating was 72%. The noise equivalent temperature difference reached 23 mK. The deposition of an anti-reflective coating improved the NEDT to 20 mK and the quantum
efficiency to 89%. [reprint (PDF)] |
| 1. | High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Optics Express, Vol. 21, No. 1, p. 968-- January 14, 2013 ...[Visit Journal] We demonstrate high power, room temperature, single-mode THz emissions based on intracavity difference frequency generation from mid-infrared quantum cascade lasers. Dual active regions both featuring giant nonlinear susceptibilities are used to enhance the THz power and conversion efficiency. The THz frequency is lithographically tuned by integrated dual-period distributed feedback gratings with different grating periods. Single mode emissions from 3.3 to 4.6 THz with side-mode suppression ratio and output power up to 40 dB and 65 µW are obtained, with a narrow linewidth of 5 GHz. [reprint (PDF)] |
| 1. | The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal] A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)] |
| 1. | InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging S. Tsao, H. Lim, H. Seo, W. Zhang and M. Razeghi IEEE Sensors Journal, Vol. 8, No. 6, p. 936-941-- June 1, 2008 ...[Visit Journal] We report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metalorganic chemical vapor depositon. The detectivity was 6 x 1010cm·Hz1/2·W-1 at 150 K and a bias of 5 V with a peak detection wavelength around 4.0 micron and a quantum efficiency of 48%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature. A 320 x 256 middle wavelength infrared focal plane array operating at temperatures up to 200 K was also demonstrated. The focal plane array had 34 mA/W responsivity, 1.1% conversion efficiency, and noise equivalent temperature difference of 344 mK at 120 K operating temperature. [reprint (PDF)] |
| 1. | Gain-length scaling in quantum dot/quantum well infrared photodetectors T. Yamanaka, B. Movaghar, S. Tsao, S. Kuboya, A. Myzaferi and M. Razeghi Virtual Journal of Nanoscale Science & Technology-- September 14, 2009 ...[Visit Journal][reprint (PDF)] |
| 1. | Generalized k·p perturbation theory for atomic-scale superlattices H. Yi and M. Razeghi Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal] We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)] |
| 1. | High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron S. Slivken, A. Evans, W. Zhang and M. Razeghi Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal] In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact.
[reprint (PDF)] |
| 1. | Low-Threshold 7.3 μm Quantum Cascade Lasers Grown by Gas-Source Molecular Beam Epitaxy S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu and M. Razeghi Applied Physics Letters 74 (19)-- May 19, 1999 ...[Visit Journal] We report low-threshold 7.3 μm superlattice-based quantum cascade lasers. The threshold current density is 3.4 kA/cm² at 300 K and 1.25 kA/cm² at 79 K in pulsed mode for narrow (∼20 μm), 2 mm-long laser diodes. The characteristic temperature (T0) is 210 K. The slope efficiencies are 153 and 650 mW/A at 300 and 100 K, respectively. Power output is in excess of 100 mW at 300 K. Laser far-field intensity measurements give divergence angles of 64° and 29° in the growth direction and in the plane of the quantum wells, respectively. Far-field simulations show excellent agreement with the measured results. [reprint (PDF)] |
| 1. | Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, R. McClintock, C. Bayram, M. Razeghi, H-J Drouhin, M.C. Clochard, V. Sallett, G. Garry, and F. Falyouni Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1678-1683-- May 29, 2009 ...[Visit Journal] This article compares the forms and properties of ZnO nanostructures grown on Si (111) and c-plane
sapphire (c-Al2O3) substrates using three different growth processes: metal organic chemical vapor
deposition (MOCVD), pulsed laser deposition (PLD), and physical vapor transport (PVT). A very
wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs, and
some novel structures resembelling “bevelled” nanowires. PVT gave the widest family of
nanostructures. PLD gave dense regular arrays of nanorods with a preferred orientation
perpendicular to the substrate plane on both Si and c-Al2O3 substrates, without the use of a catalyst.
X-ray diffraction (XRD) studies confirmed that nanostructures grown by PLD were better
crystallized and more highly oriented than those grown by PVT and MOCVD. Samples grown on
Si showed relatively poor XRD response but lower wavelength emission and narrower linewidths in
PL studies. [reprint (PDF)] |
| 1. | Recent progress of widely tunable, CW THz sources based QCLs at room temperature Manijeh Razeghi Terahertz Science and Technology, Vol.10, No.4, pp. 87-151-- December 7, 2017 ...[Visit Journal] The THz spectral region is of significant interest to the scientific community, but is one of the hardest regions to access with conventional technology. A wide range of compelling new applications are initiating a new revolution in THz technology, especially with regard to the development of compact and versatile devices for THz emission and detection. In this article, recent advances with regard to III-V semiconductor optoelectronics are explored with emphasis on how these advances will lead to the next generation of THz component technology [reprint (PDF)] |
| 1. | III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal] III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)] |
| 1. | Growth of Deep UV Light Emitting Diodes by Metalorganic Chemical Vapor Deposition A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 400-- January 25, 2004 ...[Visit Journal] We demonstrate high power AlGaN based ultraviolet light-emitting diodes (UV LEDs) with an emission wavelength of 280 nm using an asymmetric single quantum well active layer configuration on top of a high-quality AlGaN/AlN template layer grown by metalorganic chemical vapor deposition (MOCVD). An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm × 300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)] |
| 1. | Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow Applied Physics Letters, 84 (12)-- March 22, 2004 ...[Visit Journal] We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. [reprint (PDF)] |
| 1. | High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal] We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 ...[Visit Journal] In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
| 1. | Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes D. Hoffman, A. Hood, F. Fuchs and M. Razeghi Journal of Applied Physics 99-- February 15, 2006 ...[Visit Journal] The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. [reprint (PDF)] |
| 1. | Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays S. Tsao, T. Yamanaka, S. Abdollahi Pour, I-K Park, B. Movaghar and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7234-0V-- January 25, 2009 ...[Visit Journal] InAs quantum dots embedded in InGaAs quantum wells with InAlAs barriers on InP substrate grown by metalorganic chemical vapor deposition are utilized for high operating temperature detectors and focal plane arrays in the middle wavelength infrared. This dot-well combination is unique because the small band offset between the InAs dots and the InGaAs well leads to weak dot confinement of carriers. As a result, the device behavior differs significantly from that in the more common dot systems that have stronger confinement. Here, we present energy level modeling of our QD-QW system and apply these results to interpret the detector behavior. Detectors showed high performance with D* over 1010 cm·Hz1/2W-1 at 150 K operating temperature and with high quantum efficiency over 50%. Focal plane arrays have been demonstrated operating at high temperature due to the low dark current observed in these devices. [reprint (PDF)] |
Page 12 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (474 Items)
|