| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 13 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
| 1. | 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011 ...[Visit Journal] We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. [reprint (PDF)] |
| 1. | Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal] Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)] |
| 1. | Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates E. Cicek, Z. Vashaei, C. Bayram, R. McClintock, M. Razeghi and M. Ulmer Proceedings, Vol. 7780, p. 77801P, SPIE Optics and Photonics Symposium, Conference on Detectors and Imaging Devices: Infrared, Focal Plane and Single Photon, San Diego, CA -- August 4, 2010 ...[Visit Journal] There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultiplier tubes. In this paper, we review the current state-of-the-art in IIINitride visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. [reprint (PDF)] |
| 1. | Background limited performance of long wavelength infrared focal plane arrays fabricated from type-II InAs/GaSb M-structure superlattice P.Y. Delaunay, B.M. Nguyen and M. Razeghi SPIE Porceedings, Vol. 7298, Orlando, FL 2009, p. 72981Q-- April 13, 2009 ...[Visit Journal] Recent advances in growth techniques, structure design and processing have lifted the performance of
Type-II InAs/GaSb superlattice photodetectors. The introduction of a M-structure design improved both the dark current and R0A of Type-II photodiodes. This new structure combined with a thick absorbing region demonstrated background limited performance at 77K for a 300K background and a 2-π field of view. A focal plane array with a 9.6 μm 50% cutoff wavelength was fabricated with this design and characterized at 80K. The dark current of individual pixels was measured around 1.3 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency
of detectors without anti-reflective coating was 72%. The noise equivalent temperature difference reached 23 mK. The deposition of an anti-reflective coating improved the NEDT to 20 mK and the quantum
efficiency to 89%. [reprint (PDF)] |
| 1. | High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi Optics Express, Vol. 21, No. 1, p. 968-- January 14, 2013 ...[Visit Journal] We demonstrate high power, room temperature, single-mode THz emissions based on intracavity difference frequency generation from mid-infrared quantum cascade lasers. Dual active regions both featuring giant nonlinear susceptibilities are used to enhance the THz power and conversion efficiency. The THz frequency is lithographically tuned by integrated dual-period distributed feedback gratings with different grating periods. Single mode emissions from 3.3 to 4.6 THz with side-mode suppression ratio and output power up to 40 dB and 65 µW are obtained, with a narrow linewidth of 5 GHz. [reprint (PDF)] |
| 1. | The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal] A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)] |
| 1. | Non-equilibrium radiation of long wavelength InAs/GaSb superlattice photodiodes D. Hoffman, A. Hood, F. Fuchs and M. Razeghi Journal of Applied Physics 99-- February 15, 2006 ...[Visit Journal] The emission behavior of binary-binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 and 13 μm. With a radiometric calibration of the experimental setup the internal and external quantum efficiencies have been determined in the temperature range between 80 and 300 K for both the negative and positive luminescences. [reprint (PDF)] |
| 1. | First observation of the quantum Hall effect in a Ga0.47In0.53As‐InP heterostructure with three electric subbands M. Razeghi; J. P. Duchemin; J. C. Portal; L. Dmowski; G. Remeni; R. J. Nicholas; A. Briggs M. Razeghi, J. P. Duchemin, J. C. Portal, L. Dmowski, G. Remeni, R. J. Nicholas, A. Briggs; First observation of the quantum Hall effect in a Ga0.47In0.53As‐InP heterostructure with three electric subbands. Appl. Phys. Lett. 17 March 1986; 48 (11)-- March 17, 1986 ...[Visit Journal] Shubnikov–de Haas and quantum Hall effects have been studied in GaInAs‐InP heterojunctions grown by modified low pressure metalorganic chemical vapor deposition. In contrast to the results reported up till now on GaInAs‐InP heterojunctions with nearly the same channel electron density, not one but three electric subbands, E0, E1, and E2, are occupied in zero magnetic field. Two electric subbands E0 and E1 contribute to the quantum Hall effect. Magnetic depopulation of the higher (E1 and E2) subbands is observed in both perpendicular and tilted magnetic field orientations. This enables a demonstration of the importance of intersubband scattering in resistivity and cyclotron resonance. [reprint (PDF)] |
| 1. | High Performance Quantum Cascade Laser Results at the Centre for Quantum Devices M. Razeghi and S. Slivken Physica Status Solidi, 195 (1)-- January 1, 2003 ...[Visit Journal] In this paper, we review some of the history and recent results related to the development of the quantum cascade laser at the Center for Quantum Devices. The fabrication of the quantum cascade laser is described relative to growth, characterization, and processing. State-of-the-art testing results for 5-11 μm lasers will be then be explored, followed by a future outlook for the technology. [reprint (PDF)] |
| 1. | Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy Ilkay Demir, Yoann Robin, Ryan McClintock, Sezai Elagoz, Konstantinos Zekentes, and Manijeh Razeghi Physica Status Solidi 214 (4), pp. 1770120-- April 4, 2017 ...[Visit Journal] The growth of thick, high quality, and low stress AlN films on Si substrates is highly desired for a number of applications like the development of micro and nano electromechanical system (MEMS and NEMS) technologies [1] and particularly for fabricating AlGaNbased UV LEDs [2–5]. UV LEDs are attractive as they are applied in many areas, such as biomedical instrumentations and dermatology, curing of industrial resins and inks, air
purification, water sterilization, and many others [2, 3]. UV LEDs have been generally fabricated on AlN, GaN, Al2O3, or SiC substrates because of better lattice mismatching to AlGaN material systems. [reprint (PDF)] |
| 1. | Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal] The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)] |
| 1. | Strain-Induced Metastable Phase Stabilization in Ga2O3 Thin Films Yaobin Xu, Ji-hyeon Park, Zhenpeng Yao, Christopher Wolverton, Manijeh Razeghi, Jinsong Wu, and Vinayak P. Dravid ACS Appl. Mater. Interfaces-- January 10, 2019 ...[Visit Journal] It is well known that metastable and transient structures in bulk can be stabilized in thin films via epitaxial strain (heteroepitaxy) and appropriate growth conditions that are often far from equilibrium. However, the mechanism of heteroepitaxy, particularly how the nominally unstable or metastable phase gets stabilized, remains largely unclear. This is especially intriguing for thin film Ga2O3, where multiple crystal phases may exist under varied growth conditions with spatial and dimensional constraints. Herein, the development and distribution of epitaxial strain at the
Ga2O3/Al2O3 film-substrate interfaces is revealed down to the atomic resolution along different
orientations, with an aberration-corrected scanning transmission electron microscope (STEM).
Just a few layers of metastable α-Ga2O3 structure were found to accommodate the misfit strain in
direct contact with the substrate. Following an epitaxial α-Ga2O3 structure of about couple unit cells, several layers (4~5) of transient phase appear as the intermediate structure to release the misfit strain. Subsequent to this transient crystal phase, the nominally unstable κ-Ga2O3 phase is stabilized as the major thin film phase form. We show that the epitaxial strain is gracefully accommodated by rearrangement of the oxygen polyhedra. When the structure is under large compressive strain, Ga3+ ions occupy only the oxygen octahedral sites to form a dense structure. With gradual release of the compressive strain, more and more Ga3+ ions occupy the oxygen tetrahedral sites, leading to volumetric expansion and the phase transformation. The structure of the transition phase is identified by high resolution electron microscopy (HREM) observation,
complemented by the density functional theory (DFT) calculations. This study provides insights
from the atomic scale and their implications for the design of functional thin film materials using epitaxial engineering. |
| 1. | Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal] InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1-
xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable
level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in
different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)] |
| 1. | Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
| 1. | Radiative recombination of confined electrons at the MgZnO/ ZnO heterojunction interface Sumin Choi, David J. Rogers, Eric V. Sandana, Philippe Bove, Ferechteh H. Teherani, Christian Nenstiel, Axel Hoffmann, Ryan McClintock, Manijeh Razeghi, David Look, Angus Gentle, Matthew R. Phillips & Cuong Ton-That Nature Scientific Reports 7, pp. 7457-- August 7, 2017 ...[Visit Journal] We investigate the optical signature of the interface in a single MgZnO/ZnO heterojunction, which exhibits two orders of magnitude lower resistivity and 10 times higher electron mobility compared with the MgZnO/Al2O3 film grown under the same conditions. These impressive transport properties are attributed to increased mobility of electrons at the MgZnO/ZnO heterojunction interface. Depthresolved cathodoluminescence and photoluminescence studies reveal a 3.2 eV H-band optical emission from the heterointerface, which exhibits excitonic properties and a localization energy of 19.6 meV. The emission is attributed to band-bending due to the polarization discontinuity at the interface, which leads to formation of a triangular quantum well and localized excitons by electrostatic coupling. [reprint (PDF)] |
| 1. | Back-illuminated solar-blind photodetectors for imaging applications R. McClintock, A. Yasan, K. Mayes, P. Kung, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp.175-- January 22, 2005 ...[Visit Journal] Back-illuminated solar-blind ultraviolet p-i-n photodetectors and focal plane arrays are investigated. We initially study single-pixel devices and then discuss the hybridization to a read-out integrated circuit to form focal plane arrays for solar-blind UV imaging. [reprint (PDF)] |
| 1. | Negative luminescence of long-wavelength InAs/GaSb superlattice photodiodes D. Hoffman, A. Hood, Y. Wei, A. Gin, F. Fuchs, and M. Razeghi Applied Physics Letters 87 (20)-- November 14, 2005 ...[Visit Journal] The electrically pumped emission behavior of binary type-II InAs/GaSb superlattice photodiodes has been studied in the spectral range between 8 µm and 13 µm. With a radiometric calibration of the experimental setup, the internal and external quantum efficiency has been determined in the temperature range between 80 K and 300 K for both, the negative and positive luminescence. The negative luminescence efficiency approaches values as high as 35% without antireflection coating. The temperature dependence of the internal quantum efficiency near zero-bias voltage allows for the determination of the electron-hole-electron Auger recombination coefficient of Γn=1×1024 cm6 s–1. [reprint (PDF)] |
| 1. | Solar-blind avalanche photodiodes R. McClintock, K. Minder, A. Yasan, C. Bayram, F. Fuchs, P. Kung and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61271D-- January 23, 2006 ...[Visit Journal] There is a need for semiconductor based UV photodetectors to support avalanche gain in order to realize better performance and more effectively compete with existing photomultiplier tubes. However, there are numerous technical issues associated with the realization of high-quality solar-blind avalanche photodiodes (APDs). In this paper, APDs operating at 280 nm, within the solar-blind region of the ultraviolet spectrum, are investigated. [reprint (PDF)] |
| 1. | Growth of Deep UV Light Emitting Diodes by Metalorganic Chemical Vapor Deposition A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 400-- January 25, 2004 ...[Visit Journal] We demonstrate high power AlGaN based ultraviolet light-emitting diodes (UV LEDs) with an emission wavelength of 280 nm using an asymmetric single quantum well active layer configuration on top of a high-quality AlGaN/AlN template layer grown by metalorganic chemical vapor deposition (MOCVD). An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm × 300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)] |
| 1. | Ammonium Sulfide Passivation of Type-II InAs/GaSb Superlattice Photodiodes A. Gin, Y. Wei, A. Hood, A. Bajowala, V. Yazdanpanah, M. Razeghi and M.Z. Tidrow Applied Physics Letters, 84 (12)-- March 22, 2004 ...[Visit Journal] We report on the surface passivation of Type-II InAs/GaSb superlattice photodetectors using various ammonium sulfide solutions. Compared to unpassivated detectors, zero-bias resistance of treated 400 µm×400 µm devices with 8 µm cutoff wavelength was improved by over an order of magnitude to ~20 kΩ at 80 K. Reverse-bias dark current density was reduced by approximately two orders of magnitude to less than 10 mA/cm2 at –2 V. Dark current modeling, which takes into account trap-assisted tunneling, indicates greater than 70 times reduction in bulk trap density for passivated detectors. [reprint (PDF)] |
| 1. | High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal] We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the 3-5 and 8-12 μm range E. Michel, J.D. Kim, S. Park, J. Xu, I. Ferguson, and M. Razeghi SPIE Photonics West '96 'Photodetectors: Materials and Devices'; Proceedings 2685-- January 27, 1996 ...[Visit Journal] In this paper, we report on the growth of InSb on (100) Si and (111)B GaAs substrates and the growth of InAsSb alloys for longer wavelength applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The photodiodes are InSb p-i-n structures and InSb/InAs1-xSbx/InSb double heterostructures grown on (100) and (111)B semi-insulating GaAs and Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. The material parameters for device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The R0A product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
| 1. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski Journal of Applied Physics Applied Physics Review 79 (10)-- May 15, 1996 ...[Visit Journal] In this review article a comprehensive analysis of the developments in ultraviolet (UV) detector technology is described. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further considerations are restricted to modern semiconductor UV detectors, so the basic theory of photoconductive and photovoltaic detectors is presented in a uniform way convenient for various detector materials. Next, the current state of the art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to a new generation of UV detectors fabricated from wide band-gap semiconductors the most promising of which are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
| 1. | Schottky barrier heights and conduction-band offsets of In1-xGaxAs1-yPy lattice matched to GaAs J.K. Lee, Y.H. Cho, B.D. Choe, K.S. Kim, H.I. Jeon, H. Lim and M. Razeghi Applied Physics Letters 71 (7)-- August 18, 1997 ...[Visit Journal] The Schottky barrier heights of Au/In1−xGaxAs1−yPy contacts have been determined as a function of y by the capacitance–voltage and temperature dependent current–voltage characteristics measurements. The barrier height is observed to increase as y is increased for both n- and p-type materials, with a more rapid increase for the p-type material. The compositional variation of the barrier heights for Au/n-In1−xGaxAs1−yPy is found to be identical to that of the conduction-band offsets in In1−xGaxAs1−yPy/GaAs heterojunctions. A possible cause of this phenomenon is also discussed. [reprint (PDF)] |
| 1. | Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal] We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)] |
Page 13 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
|