| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 16 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
| 1. | Monolithic, steerable, mid-infrared laser realized with no moving parts Slivken S, Wu D, Razeghi M Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal] The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)] |
| 1. | Intermixing of GaInP/GaAs Multiple Quantum Wells C. Francis, M.A. Bradley, P. Boucaud, F.H. Julien and M. Razeghi Applied Physics Letters 62 (2)-- January 11, 1993 ...[Visit Journal] The intermixing of GaInP‐GaAs superlattices induced by a heat treatment is investigated as a function of the annealing temperature and duration. Photoluminescence experiments reveal a large red shift of the effective band gap of the annealed quantum wells thus indicating a dominant self‐diffusion of the group III atoms which is confirmed by secondary ion mass spectroscopic measurements. For long enough annealing durations, the red shift saturates and even decreases due to the competing slower self‐diffusion of the group V atoms. Experiments are well understood based on a simple diffusion model. [reprint (PDF)] |
| 1. | First cw operation of a Ga0.25In0.75As0.5P0.5‐InP laser on a silicon substrate M. Razeghi; M. Defour; R. Blondeau; F. Omnes; P. Maurel; O. Acher; F. Brillouet; J. C. C‐Fan; J. Salerno Appl. Phys. Lett. 53, 2389–2390 (1988) -- December 12, 1988 ...[Visit Journal] We report the first successful room-temperature cw operations of a GaO.
25 1110.75 ASo.
5 po.
s -InP
buried ridge structure laser emitting at 1.3 f-tm grown by two-step low-pressure metalorganic
chemical vapor deposition on a silicon substrate. An output power of 20 m W with an external
quantum efficiency of 16% at room temperature has been obtained. A threshold current as low
as 45 rnA under cw operation at room temperature has been measured. The first cw aging test
at room temperature, at 2 mW during 5 h, shows a very low degradation (Ill 11,;;5%).
[reprint (PDF)] |
| 1. | Tl incorporation in InSb and lattice contraction of In1-xTlxSb J.J. Lee and M. Razeghi Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal] Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)] |
| 1. | Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden Journal of Crystal Growth, Volume 435, Pages 105-109-- November 7, 2015 ...[Visit Journal] p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry
standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. [reprint (PDF)] |
| 1. | High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi Appl. Phys. Lett. 116, 161108-- April 21, 2020 ...[Visit Journal] We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. [reprint (PDF)] |
| 1. | Investigation of Enhanced Heteroepitaxy and Electrical Properties in k-Ga2O3 due to Interfacing with β-Ga2O3 Template Layers Junhee Lee, Lakshay Gautam, Ferechteh H. Teherani, Eric V. Sandana, P. Bove, David J. Rogers and Manijeh Razeghi J. Lee, M. Razeghi, Physica Status Solidi A 2023,220, 2200559, https://doi.org/10.1002/pssa.202200559 ...[Visit Journal] Heteroepitaxial k-Ga2O3 films grown by metal-organic chemical vapor deposition (MOCVD) were found to have superior materials and electrical properties thanks to the interfacing with a b-Ga2O3 template layer. k-Ga2O3grown on sapphire has not been able to demonstrate its full potential due to materials imperfections created by strain induced by the lattice mismatch at the interface between the epilayer and the substrate. By adopting a b-Ga2O3 template on a c-sapphire substrate, higher quality k-Ga2O3thin films were obtained, as evidenced by a smoother surface morphology, narrower XRD peaks, and superior electrical performance. The implications of this phenomenon, caused by b-Ga2O3 buffer layer, are already very encouraging for both boosting current device performance and opening up the perspective of novel applications for Ga2O3. [reprint (PDF)] |
| 1. | 8-13 μm InAsSb heterojunction photodiode operating at near room temperature J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal] p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)] |
| 1. | Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal] Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)] |
| 1. | Stable single mode terahertz semiconductor sources at room temperature M. Razeghi 2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal] Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)] |
| 1. | Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal] We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)] |
| 1. | Passivation of Type-II InAs/GaSb Superlattice Photodiodes A. Gin, Y. Wei, J. Bae, A. Hood, J. Nah, and M. Razeghi International Conference on Metallurgical Coatings and Thin Films (ICMCTF), San Diego, CA; Thin Solid Films 447-448-- January 30, 2004 ...[Visit Journal] Recently, excellent infrared detectors have been demonstrated using Type-II InAs/GaSb superlattice materials sensitive at wavelengths from 3 μm to greater than 32 μm. These results indicate that Type-II superlattice devices may challenge the preponderance of HgCdTe and other state-of-the-art infrared material systems. As such, surface passivation is becoming an increasingly important issue as progress is made towards the commercialization of Type-II devices and focal plane array applications. This work focuses on initial attempts at surface passivation of Type-II InAs/GaSb superlattice photodiodes using PECVD-grown thin layers of SiO2. Our results indicate that silicon dioxide coatings deposited at various temperatures improve photodetector resistivity by several times. Furthermore, reverse-bias dark current has been reduced significantly in passivated devices. [reprint (PDF)] |
| 1. | Long Wavelength Type-II Photodiodes Operating at Room Temperature H. Mohseni and M. Razeghi IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
| 1. | Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys M. Razeghi, J.P. Duchemin M. Razeghi, J.P. Duchemin, Recent advances in MOCVD growth of InxGa1-xAsyP1-y alloys, Journal of Crystal Growth, Volume 70, Issues 1–2, 1984, Pages 145-149,-- December 1, 1984 ...[Visit Journal] The low pressure metalorganic chemical vapour deposition (LPMOCVD) growth of GaxIn1-xAsyP1-y-InP lattice matched system, with high mobilities, sharp interfaces, low background doping densities, and the formation of a two-dimensional electron gas (2DEG) at the interfaces, has recently made spectacular advances, as in evidenced by the availability of high quality DH lasers, PIN photodiodes, and Gunn diodes. We present here some new results obtained on the above-mentioned material and devices. [reprint (PDF)] |
| 1. | Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition M. Razeghi; P‐L. Meunier; P. Maurel M. Razeghi, P‐L. Meunier, P. Maurel; Growth of GaInAs‐InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition. J. Appl. Phys. 15 March 1986; 59 (6): 2261–2263-- March 15, 1986 ...[Visit Journal] Ga0.47In0.53As‐InP multiquantum wells grown by low‐pressure metalorganic chemical vapor deposition on garnet (GGG=Gd3Ga5O12 with a=12.383 Å) substrates are presented for the first time. The x‐ray diffraction pattern shows that the orientation of the epitaxial layer is (111) while the underlying substrate orientation is (100). The photoluminescence at 77 K is due to the GaInAs layers. [reprint (PDF)] |
| 1. | Background limited long wavelength infrared type-II InAs/GaSb superlattice photodiodes operating at 110 K B.M. Nguyen, D. Hoffman, E.K. Huang, P.Y. Delaunay, and M. Razeghi Applied Physics Letters, Vol. 93, No. 12, p. 123502-1-- September 22, 2008 ...[Visit Journal] The utilization of the P+-pi-M-N+ photodiode architecture in conjunction with a thick active region can significantly improve long wavelength infrared Type-II InAs/GaSb superlattice photodiodes. By studying the effect of the depletion region placement on the quantum efficiency in a thick structure, we achieved a topside illuminated quantum efficiency of 50% for an N-on-P diode at 8.0 µm at 77 K. Both the double heterostructure design and the application of polyimide passivation greatly reduce the surface leakage, giving an R0A of 416 Ω·cm2 for a 1% cutoff wavelength of 10.52 µm, a Shot–Johnson detectivity of 8.1×1011 cm·Hz½/W at 77 K, and a background limited operating temperature of 110 K with 300 K background. [reprint (PDF)] |
| 1. | InAs/InAs1-XSbx Type-II Superlattices for High-Performance Long-Wavelength Infrared Medical Thermography Manijeh Razeghi, Abbas Haddadi, Guanxi Chen, Romain Chevallier and Ahn Minh Hoang ECS Trans. 2015 66(7): 109-116-- June 1, 2015 ...[Visit Journal] We present the demonstration of a high-performance long-wavelength infrared nBn photodetectors based on InAs/InAs1-xSbx type-II superlattices on GaSb substrate. The photodetector’s 50% cut-off wavelength was ~10 μm at 77K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at -90 mV applied bias voltage under front-side illumination and without any anti-reflection coating. With an R×A of 119 Ω·cm² and a dark current density of 4.4×10-4 A/cm² under -90 mV applied bias voltage at 77 K, the photodetector exhibited a specific detectivity of 2.8×1011 Jones. This photodetector opens a new horizon for making infrared imagers with higher sensitivity for medical thermography. |
| 1. | High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers S. Slivken, A. Evans, J. David, and M. Razeghi Applied Physics Letters, 81 (23)-- December 2, 2002 ...[Visit Journal] High-power quantum cascade lasers emitting at λ = 6.1 μm are demonstrated. Accurate control of growth parameters and strain balancing results in a near-perfect lattice match, which leads to excellent material quality. Excellent peak power for uncoated lasers, up to 1.5 W per facet for a 21 μm emitter width, is obtained at 300 K for 30 period structures. The threshold current density at 300 K is only 2.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature T0 of 167 K. Next, Y2O3/Ti/Au mirror coatings were deposited on 1.5 mm cavities and mounted epilayer down. These lasers show an average output power of up to 225 mW at 17% duty cycle, and still show 8 mW average power at 45% duty cycle. [reprint (PDF)] |
| 1. | Modeling Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method: New Aspects Y. Wei, M. Razeghi, G.J. Brown, and M.Z. Tidrow SPIE Conference, Jose, CA, Vol. 5359, pp. 301-- January 25, 2004 ...[Visit Journal] The recent advances in the experimental work on the Type-II InAs/GaSb superlattices necessitate a modeling that can handle arbitrary layer thickness as well as different types of interfaces in order to guide the superlattice design. The empirical tight-binding method (ETBM) is a very good candidate since it builds up the Hamiltonian atom by atom. There has been a lot of research work on the modeling of Type-II InAs/GaSb superlattices using the ETBM. However, different groups generate very different accuracy comparing with experimental results. We have recently identified two major aspects in the modeling: the antimony segregation and the interface effects. These two aspects turned out to be of crucial importance governing the superlattice properties, especially the bandgap. We build the superlattice Hamiltonian using antimony segregated atomic profile taking into account the interface. Our calculations agree with our experimental results within growth uncertainties. In addition we introduced the concept of GaxIn1-x type interface engineering, which will add another design freedom especially in the mid-wavelength infrared range (3~7 µm) in orderto reduce the lattice mismatch. [reprint (PDF)] |
| 1. | Thermal stability of GaN thin films grown on (0001) Al2O3, (0112) Al2O3 and (0001)Si 6H-SiC substrates C.J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D.K. Gaskill Journal of Applied Physics 76 (1)-- July 1, 1994 ...[Visit Journal] Single crystals of GaN were grown on (0001), (0112) Al2O3 and (0001)Si 6H‐SiC substrates using an atmospheric pressure metalorganic chemical‐vapor‐deposition reactor. The relationship has been studied between the thermal stability of the GaN films and the substrate’s surface polarity. It appeared that the N‐terminated (0001) GaN surface grown on (0001)Si 6H‐SiC has the most stable surface, followed by the nonpolar (1120) GaN surface grown on (0112) Al2O3, while the Ga‐terminated (0001) GaN surface grown on (0001) Al2O3 has the least stable surface. This is explained with the difference in the atomic configuration of each of these surfaces which induces a difference in their thermal decomposition. [reprint (PDF)] |
| 1. | ZnO nanorod electrodes for hydrogen evolution and storage Harinipriya, S.; Usmani, B.; Rogers, D. J.; Sandana, V. E.; Teherani, F. Hosseini; Lusson, A.; Bove, P.; Drouhin, H.-J.; Razeghi, M. Proc. SPIE 8263, Oxide-based Materials and Devices III, 82631Y (February 9, 2012)-- February 9, 2012 ...[Visit Journal] Due to the attractive combination of a relatively high specific heat of combustion with a large specific energy capacity, molecular hydrogen (H2) is being investigated for use as an alternative to fossil fuels. Energy-efficient H2 production and safe storage remain key technical obstacles to implementation of an H2 based economy, however. ZnO has been investigated for use as an alternative photocatalytic electrode to TiO2 for solarpowered photo-electro-chemical (PEC) electrolysis, in which H2 is generated by direct water splitting in a cell with a metal cathode and a semiconducting anode. In this investigation, ZnO NR grown on Si (100) substrates by pulsed laser deposition were investigated for use as electrodes in the Hydrogen Evolution Reaction (HER). The electrochemical potential and Fermi energy of the ZnO NR were estimated from the electrochemical current density in acid and alkaline solutions via phenomenological thermodynamic analysis. As well as acting as an effective electrocalytic cathode, the ZnO NR appear to operate as a hydrogen reservoir. These results indicate that the ZnO NR have excellent potential for the storage of evolved H2. [reprint (PDF)] |
| 1. | High peak power 16 m InP-related quantum cascade laser A. Szerlinga,∗, S. Slivkenb, M. RazeghibaInstytut Opto-Electronics Review 25, pp. 205–208-- July 22, 2017 ...[Visit Journal] tIn this paper ∼16 μm-emitting multimode InP-related quantum cascade lasers are presented with themaximum operating temperature 373 K, peak and average optical power equal to 720 mW and 4.8 mW at 303 K, respectively, and the characteristic temperature (T0) 272 K. Two types of the lasers were fabricatedand characterized: the lasers with a SiO2 layer left untouched in the area of the metal-free window ontop of the ridge, and the lasers with the SiO2layer removed from the metal-free window area. Dual-wavelength operation was obtained, at ∼15.6 μm (641 cm−1) and at ∼16.6 μm (602 cm−1) for laserswith SiO2-removed, while within the emission spectrum of the lasers with SiO2-left untouched only the former lasing peak was present. The parameters of these devices like threshold current, optical power and emission wavelength are compared. Lasers without the SiO2 layer showed ∼15% lower threshold current than these ones with the SiO2 layer. The optical powers for lasers without SiO2 layer were almost twice higher than for the lasers with the SiO2 layer on the top of the ridge. [reprint (PDF)] |
| 1. | Intrinsic AlGaN photodetectors for the entire compositional range D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal] AlxGa1-xN ultraviolet photoconductors with cut- off wavelengths from 365 nm to 200 nm have been fabricated and characterized. Various characteristics of the devices, such as photoresponse, voltage-dependent responsivity, frequency-dependent responsivity and noise spectral density, were measured and cross-referenced with optical, electrical and structural characteristics of the material to provide information about the mechanisms taking place during detection. The maximum detectivity reached 5.5 X 108 cm·Hz½/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1-xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 msec. The frequency-dependent noise-spectrum shows that it is dominated by Johnson-noise at high frequencies for low Al-composition samples. [reprint (PDF)] |
| 1. | High performance focal plane array based on type-II InAs/GaSb superlattice heterostructures P.Y. Delaunay and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000M-1-10.-- February 1, 2008 ...[Visit Journal] Recent progress in growth techniques, structure design and processing has lifted the performances of Type-II InAs/GaSb superlattice photodetectors. A double heterostructure design, based on a low band gap (11 µm) active region and high band gap (5 µm) superlattice contacts, reduced the sensitivity of the superlattice to surface effects. The heterodiodes with an 11 µm cutoff, passivated with SiO2, presented similar performances to unpassivated devices and a one order of magnitude increase of the resistivity of the sidewalls, even after flip-chip bonding and underfill. Thanks to this new design and to the inversion of the polarity of the devices, a high performance focal plane array with an 11 µm cutoff was demonstrated. The noise equivalent temperature difference was measured as 26 mK and 19 mK for operating temperatures of 81 K and 67 K. At an integration time of 0.08 ms, the FPA presented a quantum efficiency superior to 50%.
[reprint (PDF)] |
| 1. | Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation F. Wang, S. Slivken, D. H. Wu, and M. Razeghi Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal] We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage.
[reprint (PDF)] |
Page 16 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
|