Page 17 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  18 19 20 21  >> Next  (509 Items)

1.  Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well
B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)]
 
1.  Long-Wavelength InAsSb Photoconductors Operated at Near Room Temperatures (200-300 K)
J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi
Applied Physics Letters., 68 (1),-- January 1, 1996 ...[Visit Journal]
Long-wavelength InAs1−xSbx photoconductors operated without cryogenic cooling are reported. The devices are based on p-InAs1−xSbx/p-InSb heterostructures grown on (100) semi-insulating GaAs substrates by low pressure metalorganic chemical vapor deposition (LP‐MOCVD). Photoreponse up to 14 μm has been obtained in a sample with x=0.77 at 300 K, which is in good agreement with the measured infrared absorption spectra. The corresponding effective lifetime of ≊0.14 ns at 300 K has been derived from stationary photoconductivity. The Johnson noise limited detectivity at λ=10.6 μm is estimated to be about 3.27×107 cm· Hz½/W at 300 K. [reprint (PDF)]
 
1.  Improved performance of quantum cascade lasers via manufacturable quality epitaxial side down mounting process utilizing aluminum nitride heatsinks
A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, C.K.N. Patel
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612702-- January 23, 2006 ...[Visit Journal]
We report substantially improved performance of high power quantum cascade lasers by utilizing epi-side down mounting that provides superior heat dissipation properties. We have obtained CW power output of 450 mW at 20°C from mid-IR QCLs. The improved thermal management achieved with epi-side down mounting has also permitted us to carry out initial lifetime tests on the mid-IR QCLs. No degradation of power output is seen even after over 300 hours of CW operation at 25°C with power output in excess of 300 mW. We believe these improvements should permit incorporation of mid-IR QCLs in reliable instrumentation. [reprint (PDF)]
 
1.  MOCVD Growth of ZnO Nanostructures Using Au Droplets as Catalysts
V.E. Sandana, D.J. Rogers, F.H. Teherani, R. McClintock, M. Razeghi, H.J. Drouhin, M.C. Clochard, V. Sallett, G. Garry and F. Fayoud
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Zinc Oxide Materials and Devices III, Vol. 6895, p. 68950Z-1-6.-- February 1, 2008 ...[Visit Journal]
ZnO nanostructures were synthesised by Metal Organic Chemical Vapor Deposition growth on Si (100) and c-Al2O3 substrates coated with a 5nm thick layer of Au. The Au coated substrates were annealed in air prior to deposition of ZnO so as to promote formation of Au nanodroplets. The development of the nanodroplets was studied as a function of annealing duration and temperature. Under optimised conditions, a relatively homogeneous distribution of regular Au nanodroplets was obtained. Using the Au nanodroplets as a catalyst, MOCVD growth of ZnO nanostructures was studied. Scanning electron microscopy revealed nanostructures with various forms including commonly observed structures such as nanorods, nanoneedles and nanotubes. Some novel nanostructures were also observed, however, which resembled twist pastries and bevelled-multifaceted table legs. [reprint (PDF)]
 
1.  Short Wavelength (λ~ 4.3 μm) High-Performance Continuous-Wave Quantum-Cascade Lasers
J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, and M. Razeghi
IEEE Photonics Technology Letters, 17 (6)-- June 1, 2005 ...[Visit Journal]
We report continuous-wave (CW) operation of a 4.3-μm quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-μm-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm2 is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 μm at 80 K to 4.34 μm at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26° and 49° in CW mode, respectively. [reprint (PDF)]
 
1.  High-Power Distributed-Feedback Quantum Cascade Lasers
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A.J. Evans, J.S. Yu, S.R. Darvish, S. Slivken and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 612704-- January 23, 2006 ...[Visit Journal]
Recently, a distributed-feedback quantum cascade laser operating in a single spectral mode at 4.8 µm and at temperatures up to 333 K has been reported. In the present work, we provide detailed measurements and modeling of its performance characteristics. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single-mode at all currents and temperatures tested. Cw output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. [reprint (PDF)]
 
1.  Polarity inversion of Type-II InAs/GaSb superlattice photodiodes
B.M. Nguyen, D. Hoffman, P.Y. Delaunay, M. Razeghi and V. Nathan
Applied Physics Letters, Vol. 91, No. 10, p. 103503-1-- September 3, 2007 ...[Visit Journal]
The authors demonstrated the realization of p-on-n Type-II InAs/GaSb superlattice photodiodes. Growth condition for high quality InAsSb layer lattice matched to GaSb was established for the use of an effective n-contact layer. By studying the effect of various GaSb capping layer thicknesses on the optical and electrical performances, an optimized thickness of 160 nm was determined. In comparison to as grown n-on-p superlattice photodiodes, this inverted design of p on n has shown similar quality. Finally, by analyzing Fabry-Perot interference fringes in the front side illuminated spectral measurement, the refractive index of the superlattice was determined to be approximately 3.8. [reprint (PDF)]
 
1.  Recent advances in mid infrared (3-5 μm) quantum cascade lasers
Manijeh Razeghi; Neelanjan Bandyopadhyay; Yanbo Bai; Quanyong Lu; Steven Slivken
Optical Materials Express, Vol. 3, Issue 11, pp. 1872-1884 (2013)-- November 2, 2013 ...[Visit Journal]
Quantum cascade laser (QCL) is an important source of electromagnetic radiation in mid infrared region. Recent research in mid-IR QCLs has resulted in record high wallplug efficiency (WPE), high continuous wave (CW) output power, single mode operation and wide tunability. CW output power of 5.1 W with 21% WPE has been achieved at room temperature (RT). A record high WPE of 53% at 40K has been demonstrated. Operation wavelength of QCL in CW at RT has been extended to as short as 3μm. Very high peak power of 190 W has been obtained from a broad area QCL of ridge width 400μm. 2.4W RT, CW power output has been achieved from a distributed feedback (DFB) QCL. Wide tuning based on dual section sample grating DFB QCLs has resulted in individual tuning of 50cm-1 and 24 dB side mode suppression ratio with continuous wave power greater than 100 mW. [reprint (PDF)]
 
1.  Modeling of Type-II InAs/GaSb Superlattices Using Empirical Tight-Binding Method and Interface Engineering
Y. Wei and M. Razeghi
Physical Review B, 69 (8)-- February 15, 2004 ...[Visit Journal]
We report the most recent work on the modeling of type-II InAs/GaSb superlattices using the empirical tight binding method in an sp3s* basis. After taking into account the antimony segregation in the InAs layers, the modeling accuracy of the band gap has been improved. Our calculations agree with our experimental results within a certain growth uncertainty. In addition, we introduce the concept of GaxIn1-x type interface engineering in order to reduce the lattice mismatch between the superlattice and the GaSb (001) substrate to improve the overall superlattice material quality. [reprint (PDF)]
 
1.  Long-term reliability of Al-free InGaAsP/GaAs λ = 808 nm) lasers at high-power high-temperature operation
J. Diaz, H. Yi, M. Razeghi and G.T. Burnham
Applied Physics Letters 71 (21)-- November 24, 1997 ...[Visit Journal]
We report the long-term reliability measurement on uncoated Al-free InGaAsP/GaAs (λ = 808 nm) lasers at high-power and high-temperature operation. No degradation in laser performance has been observed for over 30 ,000 h of lifetime testing in any of randomly selected several 100 μm-wide uncoated lasers operated at 60 °C with 1 W continuous wave output power. This is the first and the most conclusive evidence ever reported that directly shows the high long-term reliability of uncoated Al-free lasers. [reprint (PDF)]
 
1.  Room-temperature, high-power and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm
S.R. Darvish, S. Slivken, A. Evans, J.S. Yu, and M. Razeghi
Applied Physics Letters, 88 (20)-- May 15, 2006 ...[Visit Journal]
High-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers is reported. Continuous-wave output powers of 100 mW at 25 °C and 20 mW at 50 °C are obtained. The device exhibits a cw threshold current density of 1.34 kA/cm2, a maximum cw wall-plug efficiency of 1% at 25 °C, and a characteristic temperature of ~190 K in pulsed mode. Single-mode emission near 9.6 μm with a side-mode suppression ratio of ≥ 30 dB and a tuning range of 2.89 cm–1 from 15 to 50 °C is obtained. [reprint (PDF)]
 
1.  Current status of high performance quantum cascade lasers at the center for quantum devices
M. Razeghi; A. Evans; Y. Bai; J. Nguyen; S. Slivken; S.R. Darvish; K. Mi
Conference Proceedings - International Conference on Indium Phosphide and Related Materials. 588-593:[4266015] (2007)-- May 14, 2007 ...[Visit Journal]
Mid-infrared laser sources are highly desired for laser-based trace chemical sensors, military countermeasures, free-space communications, as well as developing medical applications. While application development has been limited by the availability of adequate mid-infrared sources, InP-based quantum cascade lasers (QCLs) hold promise as inexpensive, miniature, portable solutions capable of producing high powers and operating at high temperatures with excellent beam quality and superior reliability. This paper discusses the most recent developments of application-ready high power (> 100 mW), continuous-wave (CW), mid-infrared QCLs operating above room temperature with lifetimes exceeding 13,000 hours. [reprint (PDF)]
 
1.  Pulsed metalorganic chemical vapor deposition of high quality AlN/GaN superlattices for intersubband transitions
C. Bayram, B. Fain, N. Pere-Laperne, R. McClintock and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-12-- January 26, 2009 ...[Visit Journal]
A pulsed metalorganic chemical vapor deposition (MOCVD) technique, specifically designed for high quality AlN/GaN superlattices (SLs) is introduced. Optical quality and precise controllability over layer thicknesses are investigated. Indium is shown to improve interface and surface quality. An AlN/GaN SL designed for intersubband transition at a telecommunication wavelength of ~1.5 µm, is grown, and processed for intersubband (ISB) absorption measurements. Room temperature measurements show intersubband absorption centered at 1.49 µm. Minimal (n-type) silicon doping of the well is shown to be crucial for good ISB absorption characteristics. The potential to extend this technology into the far infrared and even the terahertz (THz) region is also discussed. [reprint (PDF)]
 
1.  Highly temperature insensitive quantum cascade lasers
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal]
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)]
 
1.  Improved performance of IR photodetectors with 3D gap engineering
J. Piotrowski and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal]
The ultimate signal-to-noise performance of the semiconductor photodetector is limited by the statistical fluctuations of the thermal generation and recombination rates in photodetector material. Cooling is an effective but impractical way of suppression of the thermal processes. The performance of uncooled detectors can be improved by minimizing the thermal generation and recombination rates and reducing the actual volume of photodetector. This can be realized in 3D heterostructure devices. In these devices, the incident radiation is absorbed in small regions of narrow gap semiconductor, buried in wide gap volume and supplied with wide gap electric contacts and radiation concentrators. The practical near room-temperature 1 - 12 μm IR heterostructure photodetectors are reported. The devices are based on variable gap Hg1-xCdxTe. The 3D heterostructures have been obtained by Isothermal Vapor Growth Epitaxy in a reusable growth system which enables in situ doping during growth with foreign impurities. Ion milling was extensively used in preparation of the devices. Monolithic optical immersion has been applied for further improvement of performance. The 3D heterostructure devices exhibit performance exceeding that of conventional photodetectors. [reprint (PDF)]
 
1.  Long-Wavelength Infrared Photodetectors Based on InSbBi Grown on GaAs Substrates
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 71 (16)-- October 20, 1997 ...[Visit Journal]
We demonstrate the operation of InSbBi infrared photoconductive detectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The fabricated photodetector showed a cutoff wavelength of 7.7 μm at 77 K. The responsivity of the InSbBi photodetector at 7 μm was about 3.2 V/W at 77 K. The corresponding Johnson-noise limited detectivity was 4.7×108  cm· Hz½/W. The carrier lifetime was estimated to be about 86 ns from the voltage-dependent responsivity measurements. [reprint (PDF)]
 
1.  Exciton localization in group-III nitride quantum wells
V.I. Litvinov and M. Razeghi
Physical Review B 59 (15)-- May 15, 1999 ...[Visit Journal]
Exciton density of states broadened by compositional disorder in the group-III nitride quantum well is calculated. The excitonic photoluminescence linewidth is estimated and related to the material parameters of the alloy for two limiting cases of two-dimensional (2D) and three-dimensional excitons in the quantum well. It is shown that the effect of the compositional fluctuations depends on dimensionality of the exciton: the 2D excitons are more sensitive to the inhomogeneities than 3D ones. The broad near-band-gap energy states distribution for quasi-two-dimensional excitons is consistent with the experimental evidence of the spontaneous and stimulated emissions from excitonic states localized on compositional fluctuations. [reprint (PDF)]
 
1.  Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices
A. Haddadi, R. Chevallier, G. Chen, A. M. Hoang, and M. Razeghi
Applied Physics Letters 106 , 011104-- January 8, 2015 ...[Visit Journal]
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10−7 A/cm² under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 1012 cm·Hz½·W-1 at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10−4 A/cm² under −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 1011 cm·Hz½·W-1. [reprint (PDF)]
 
1.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
Manijeh Razeghi
Journal of Vacuum Volume 146, Pages 308-328-- December 1, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
1.  AlxGa1-xN p-i-n Photodiodes on Sapphire Substrates
D. Walker, P. Kung, P. Sandvik, J. Wu, M. Hamilton, I.H. Lee, J. Diaz, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
We report the fabrication and characterization of AlxGa1-xN p-i-n photodiodes (0.05 ≤ to X ≤ 0.30) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The devices present a visible-rejection of about four orders of magnitude with a cutoff wavelength that shifts from 350 nm to 291 nm. They also exhibit a constant responsivity for five decades (30 mW/m² to 1 kW/m²) of optical power density. Using capacitance measurements, the values for the acceptor concentration in the p-AlxGa1-xN region and the unintentional donor concentration in the intrinsic region are found. Photocurrent decays are exponential for high load resistances, with a time constant that corresponds to the RC product of the system. For low load resistances the transient response becomes non-exponential, with a decay time longer than the RC constant. [reprint (PDF)]
 
1.  Amorphous ZnO films grown by room temperature pulsed laser deposition on paper and mylar for transparent electronics applications
D.J. Rogers, V.E. Sandana, F. Hosseini Teherani, R. McClintock, M. Razeghi, and H.J. Drouhin
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7940, p. 79401K-- January 24, 2011 ...[Visit Journal]
Recently, there has been a surge of activity in the development of next-generation transparent thin film transistors for use in applications such as electronic paper and flexible organic light emitting diode panels. Amongst the transparent conducting oxides attracting the most interest at present are Amorphous Oxide Semiconductors (AOS) based on ZnO because they exhibit enhanced electron mobility (μ), superior capacity for processability in air and improved thermodynamic stability compared with conventional covalent amorphous semiconductors and existing AOS. Moreover, they give excellent performance when fabricated at relatively low temperature and can readily be made in large area format. Thus, they are projected to resolve the trade-off between processing temperature and device performance and thereby allow fabrication on inexpensive heatsensitive substrates. For the moment, however, an undesireable post-deposition annealing step at a temperature of about 200ºC is necessary in order to obtain suitable electrical and optical properties. This paper demonstrates the possibility of directly engineering amorphous ZnO with relatively high conductiviy at room temperature on paper and mylar substrates using pulsed laser deposition. [reprint (PDF)]
 
1.  Multiple-band, Single-mode, High-power, Phase-locked, Mid-infrared Quantum Cascade Laser Arrays
Manijeh Razeghi, Wenjia Zhou, Quanyong Lu, Donghai Wu, and Steven Slivken
Imaging and Applied Optics 2018, JTh1A.2-- September 15, 2018 ...[Visit Journal]
Single-mode, 16-channel, phase-locked laser arrays based on quantum cascade laser technology are demonstrated at multiple spectral bands across the mid-infrared spectrum region. High peak output power of 50W is achieved around the long-wavelength band of 7.7µm, while a side mode suppression ratio over 25dB is obtained. Far field distribution measurement result indicates a uniform phase distribution across the array output. [reprint (PDF)]
 
1.  Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal]
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
1.  Structural and compositional characterization of MOVPE GaN thin films transferred from sapphire to glass substrates using chemical lift-off and room temperature direct wafer bonding and GaN wafer scale MOVPE growth on ZnO-buffered sapphire
S. Gautier, T. Moudakir, G. Patriarche, D.J. Rogers, V.E. Sandana, F. Hosseini Teherani, P. Bove, Y. El Gmili, K. Pantzas, Suresh Sundaram, D. Troadec, P.L. Voss, M. Razeghi, A. Ougazzaden
Journal of Crystal Growth, Volume 370, Pages 63-67 (2013)-- May 1, 2013 ...[Visit Journal]
GaN thin films were grown on ZnO/c-Al2O3 with excellent uniformity over 2 in. diameter wafers using a low temperature/pressure MOVPE process with N2 as a carrier and dimethylhydrazine as an N source. 5 mm×5 mm sections of similar GaN layers were direct-fusion-bonded onto soda lime glass substrates after chemical lift-off from the sapphire substrates. X-Ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy confirmed the bonding of crack-free wurtzite GaN films onto a glass substrate with a very good quality of interface, i.e. continuous/uniform adherence and absence of voids or particle inclusions. Using this approach, (In) GaN based devices can be lifted-off expensive single crystal substrates and bonded onto supports with a better cost-performance profile. Moreover, the approach offers the possibility of reclaiming the expensive sapphire substrate so it can be utilized again for growth. [reprint (PDF)]
 
1.  Energy harvesting from millimetric ZnO single wire piezo-generators
Rogers, D. J.; Carroll, C.; Bove, P.; Sandana, V. E.; Goubert, L.; Largeteau, A.; Teherani, F. Hosseini; Demazeau, G.; McClintock, R.; Drouhin, H.-J.; Razeghi, M.
Oxide-based Materials and Devices III. Edited by Teherani, Ferechteh H.; Look, David C.; Rogers, David J. Proceedings of the SPIE, Volume 8263, article id. 82631X, 7 pp. (2012).-- February 9, 2013 ...[Visit Journal]
This work reports on investigations into the possibility of harvesting energy from the piezoelectric response of millimetric ZnO rods to movement. SEM & PL studies of hydrothermally grown ZnO rods revealed sizes ranging from 1 - 3 mm x 100 - 400 microns and suggested that each was a wurtzite monocrystal. Studies of current & voltage responses as a function of time during bending with a probe arm gave responses coherent with those reported elsewhere in the literature for ZnO nanowires or micro-rod single wire generators. The larger scale of these rods provided some advantages over such nano- and microstructures in terms of contacting ease, signal level & robustness. [reprint (PDF)]
 

Page 17 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  18 19 20 21  >> Next  (509 Items)