About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 19 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
2. | Very high quality p-type AlxGa1-xN/GaN superlattice A. Yasan and M. Razeghi special ISDRS issue of Solid State Electronics Journal, 47-- January 1, 2003 ...[Visit Journal] Very high quality p-type AlxGa1−xN/GaN superlattice has been achieved through optimization of Mg flow and period of superlattice. Theoretical model was used to optimize the structure of superlattice by choosing suitable Al compositions and superlattice periods. The experiments show that for x=0.26, the resistivity is as low as 0.19 Ω cm and hole concentration is as high as 4.2×1018 cm−3, the highest values ever reported for p-type AlGaN/GaN superlattices. Hall effect measurement and admittance spectroscopy on the samples confirm the high quality of the superlattices. The activation energy calculated for p-type GaN and p-type A0.1Ga0.9N/GaN superlattice is estimated to be not, vert, similar 125 and 3 meV respectively. [reprint (PDF)] |
2. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
2. | Low pressure metalorganic chemical vapor deposition of high quality AlN and GaN thin films on sapphire and silicon substrates P. Kung, X. Zhang, E. Bigan, and M. Razeghi Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal] High quality AlN and GaN epilayers have been grown on basal plane sapphire by low pressure metalorganic chemical vapor deposition. The X-ray rocking curve linewidth of the AlN and GaN films were about 100 and 30 arcsecs respectively. Sharp absorption edges were determined at 6.1 and 3.4 eV respectively. Successful donor-bound excitonic luminescence emissions were detected for GaN films grown on sapphire and silicon. Two additional lines at 3.37 and 3.31 eV were observed on GaN on sapphire and assumed to be impurity-related. Doping of GaN layers was achieved with magnesium. Mg-related photoluminescence emissions were successfully detected on as-grown samples, without any post-growth treatment. [reprint (PDF)] |
2. | Optical Investigations of GaAs-GaInP Quantum Wells and Superlattices Grown by Metalorganic Chemical Vapor Deposition Omnes F., and Razeghi M. Applied Physics Letters 59 (9), p. 1034-- May 28, 1991 ...[Visit Journal] Recent experimental results on the photoluminescence and photoluminescence excitation of GaAs‐Ga0.51In0.49P lattice‐matched quantum wells and superlattices are discussed. The full width at half maximum of a 10‐period GaAs‐GaInP superlattice with Lz=90 Å and LB=100 Å is 4 meV at 4 K. The photoluminescence excitation exhibits very sharp peaks attributed to the electron to light‐hole and electron to heavy‐hole transitions. The GaInP‐GaAs interface suffers from memory effect of In, rather than P or As elements. [reprint (PDF)] |
2. | Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi Appl. Phys. Lett. 103, 011101 (2013)-- July 1, 2013 ...[Visit Journal] We report room temperature terahertz (THz) quantum cascade laser sources with high power based on difference frequency generation. The device is Čerenkov phase matched and spectrally purified with an integrated dual-period distributed-feedback grating. Symmetric current injection and epilayer-down mounting of the device onto a patterned submount are used to improve the electrical uniformity and heat removal, respectively. The epilayer-down mounting also allows for THz anti-reflective coating to enhance the THz outcoupling efficiency. Single mode emission at 3.5 THz with a side-mode suppression ratio and output power up to 30 dB and 215 μW are obtained, respectively. [reprint (PDF)] |
2. | Current status and potential of high power mid-infrared intersubband lasers S. Slivken, Y. Bai, B. Gokden, S.R. Darvish and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080B-1-- January 22, 2010 ...[Visit Journal] Some of the recent advances in high power quantum cascade laser development will be reviewed in this paper. Research areas explored include short wavelength (λ <4 µm) lasers, high performance strain-balanced heterostructures, and high power long wavelength (7< λ< 16 µm) lasers. Near λ=4.5 µm, highlights include demonstration of 18% continuous wave wallplug efficiency at room temperature, 53% pulsed wallplug efficiency at 40 K, and 120 W of peak power output from a single device at room temperature. Near λ ~10 µm, up to 0.6 W of continuous output power at room temperature has also been demonstrated, with pulsed efficiencies up to 9%. [reprint (PDF)] |
2. | Optical Investigations of GaAs-GaInP Quantum Wells Grown on the GaAs, InP, and Si Substrates H. Xiaoguang, M. Razeghi Applied Physics Letters 61 (14)-- October 5, 1992 ...[Visit Journal] We report the first photoluminescence investigation of GaAs‐Ga0.51In0.49P lattice matched multiquantum wells grown by the low pressure metalorganic chemical vapor deposition simultaneously in the same run on GaAs, Si, and InP substrates. The sharp photoluminescence peaks indicate the high quality of the samples on three different substrates. The temperature dependence of the photoluminescence indicates that the intrinsic excitonic transitions dominate at low temperature and free‐carrier recombinations at room temperature. The photoluminescence peaks of the samples grown on Si and InP substrates shift about 15 meV from the corresponding peaks of the sample grown on the GaAs substrate. Two possible interpretations are provided for the observed energy shift. One is the diffusion of In along the dislocation threads from GaInP to GaAs and another is the localized strain induced by defects and In segregations. [reprint (PDF)] |
2. | Light People: Professor Manijeh Razeghi Hui Wang, and Cun Yu Light Sci Appl 13, 164 ...[Visit Journal] Editorial
The sense of light is the first sensation the human body develops. The importance of light is self-evident.
However, we all know that the light we can see and perceive covers only a small section of the spectrum. Today,
for Light People, we feature a researcher who is committed to exploring different spectral bands of light ranging
from deep ultraviolet to terahertz waves and working on quantum semiconductor technology, Prof. Manijeh
Razeghi of the Northwestern University in the United States. Known for her quick thinking and witty remarks,
Prof. Razeghi is passionate about life and always kind to others. As a scientist, she does not limit her research to a
single focus, instead, she works on the entire process from material selection, device design, processing, and
manufacturing, all the way to product application. She has a strong passion for education, a commitment
unwavered by fame or fortune. For her students, she is both a reliable source of knowledge and a motherly
figure with a caring heart. She firmly believes that all things in nature can give her energy and inspiration. In
science, she is a true “pioneer” in research and a “miner” of scientific discoveries. She advises young scientists to
enjoy and love what they do, and turn their research into their hobby. As a female scientist, she calls on all
women to realize their true value and potential. Next, let’s hear from Professor Manijeh Razeghi, a true star who
radiates energy and light [reprint (PDF)] |
2. | Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes R. McClintock, J.L. Pau, K. Minder, C. Bayram, P. Kung and M. Razeghi Applied Physics Letters, Vol. 90 No. 14, p. 141112-1-- April 2, 2007 ...[Visit Journal] Avalanche p-i-n photodiodes were fabricated on AlN templates for back illumination. Structures with different intrinsic layer thicknesses were tested. A critical electric field of 2.73 MV/cm was estimated from the variation of the breakdown voltage with thickness. From the device response under back and front illumination and the consequent selective injection of holes and electrons in the junction, ionization coefficients were obtained for GaN. The hole ionization coefficient was found to be higher than the electron ionization coefficient as predicted by theory. Excess multiplication noise factors were also calculated for back and front illumination, and indicated a higher noise contribution for electron injection. [reprint (PDF)] |
2. | Broadband monolithically-tunable quantum cascade lasers Wenjia Zhou, Ryan McClintock, Donghai Wu, Steven Slivken, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400A-- January 26, 2018 ...[Visit Journal] Mid-infrared lasers, emitting in the spectral region of 3-12 μm that contain strong characteristic vibrational transitions of
many important molecules, are highly desirable for spectroscopy sensing applications. High efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning, which is critical for spectroscopy applications, is still largely relying on incorporating external
gratings, which have stability issues. Here, we demonstrate the development a monolithic, widely tunable quantum cascade laser source emitting between 6.1 and 9.2 μm through an on-chip integration of a sampled grating distributed
feedback tunable laser array with a beam combiner. A compact tunable laser system was built to drive the individual lasers within the array and coordinate the driving of the laser array to produce desired wavelength. A broadband spectral
measurement (520cm-1) of methane shows excellent agreement with Fourier transform infrared spectrometer measurement. Further optimizations have led to high performance monolithic tunable QCLs with up to 65 mW output
while delivering fundamental mode outputs. [reprint (PDF)] |
2. | Demonstration of mid-wavelength infrared nBn photodetectors based on type-II InAs/InAs1-xSbx superlattice grown by metal-organic chemical vapor deposition Donghai Wu, Arash Dehzangi, and Manijeh Razeghi Appl. Phys. Lett. 115, 061102-- August 6, 2019 ...[Visit Journal] We report design, growth, and characterization of midwavelength infrared nBn photodetectors based on a type-II InAs/InAs1-xSbx superlattice on a GaSb substrate grown by metal-organic chemical vapor deposition. An InAs/AlAs1-ySby/InAs/InAs1-xSbx superlattice design was used as the large bandgap electron barrier in the photodetectors. At 150 K, the photodetector exhibits a peak responsivity of 1.23 A/W, corresponding to a quantum efficiency of 41% at an applied bias voltage of −100 mV under front-side illumination, with a 50% cut-off wavelength of 4.6 μm. With an R × A of 356 Ω·cm2 and a dark current density of 1.6 × 10−4 A/cm2 under an applied bias of −100 mV at 150 K, the photodetector exhibits a specific detectivity of 1.4 × 1011 cm·Hz1/2/W. [reprint (PDF)] |
2. | High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi Nature Scientific Reports 6, Article number: 24144-- April 7, 2016 ...[Visit Journal] We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)] |
2. | Growth of Deep UV Light Emitting Diodes by Metalorganic Chemical Vapor Deposition A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 400-- January 25, 2004 ...[Visit Journal] We demonstrate high power AlGaN based ultraviolet light-emitting diodes (UV LEDs) with an emission wavelength of 280 nm using an asymmetric single quantum well active layer configuration on top of a high-quality AlGaN/AlN template layer grown by metalorganic chemical vapor deposition (MOCVD). An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm × 300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)] |
2. | Tl incorporation in InSb and lattice contraction of In1-xTlxSb J.J. Lee and M. Razeghi Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal] Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)] |
2. | Long Wavelength Type-II Photodiodes Operating at Room Temperature H. Mohseni and M. Razeghi IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
2. | Schottky MSM Photodetectors on GaN Films Grown on Sapphire by Lateral Epitaxial Overgrowth P. Kung, D. Walker, P. Sandvik, M. Hamilton, J. Diaz, I.H. Lee and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] We report the growth and characterization of Schottky based metal-semiconductor-metal ultraviolet photodetectors fabricated on lateral epitaxially overgrown GaN films. The lateral epitaxial overgrowth of GaN was carried out on basal plane sapphire substrates by low pressure metalorganic chemical vapor deposition and exhibited lateral growth rates more than 5 times as high as vertical growth rates. The spectral responsivity, the dependence on bias voltage, on incident optical power, and the time response of these photodetectors have been characterized. Two detector orientations were investigated: one with the interdigitated finger pattern parallel and the other perpendicular to the underlying SiOx mask stripes. [reprint (PDF)] |
2. |
-- November 30, 1999 |
1. | Widely tunable room temperature semiconductor terahertz source Q. Y. Lu, S. Slivken, N. Bandyopadhyay, Y. Bai, and M. Razeghi Appl. Phys. Lett. 105, 201102-- November 17, 2014 ...[Visit Journal] We present a widely tunable, monolithic terahertz source based on intracavity difference frequency generation within a mid-infrared quantum cascade laser at room temperature. A three-section ridge waveguide laser design with two sampled grating sections and a distributed-Bragg section is used to achieve the terahertz (THz) frequency tuning. Room temperature single mode THz emission with a wide tunable frequency range of 2.6–4.2 THz (∼47% of the central frequency) and THz power up to 0.1 mW is demonstrated, making such device an ideal candidate for THz spectroscopy and sensing. [reprint (PDF)] |
1. | Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers Quanyong Lu, Donghai Wu, Saumya Sengupta, Steven Slivken, Manijeh Razeghi Nature Scientific Reports 6, Article number: 23595-- March 24, 2016 ...[Visit Journal] A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. [reprint (PDF)] |
1. | Gain and recombination dynamics in photodetectors made with quantum nanostructures: The quantum dot in a well and the quantum well B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi Physical Review B, Vol. 78, No. 11-- September 15, 2008 ...[Visit Journal] We consider the problem of charge transport and recombination in semiconductor quantum well infrared photodetectors and quantum-dot-in-a-well infrared detectors. The photoexcited carrier relaxation is calculated using rigorous random-walk and diffusion methods, which take into account the finiteness of recombination cross sections, and if necessary the memory of the carrier generation point. In the present application, bias fields are high and it is sufficient to consider the drift limited regime. The photoconductive gain is discussed in a quantum-mechanical language, making it more transparent, especially with regard to understanding the bias and temperature dependence. Comparing experiment and theory, we can estimate the respective recombination times. The method developed here applies equally well to nanopillar structures, provided account is taken of changes in mobility and trapping. Finally, we also derive formulas for the photocurrent time decays, which in a clean system at high bias are sums of two exponentials. [reprint (PDF)] |
1. | Angled cavity broad area quantum cascade lasers Y. Bai, S. Slivken, Q.Y. Lu, N. Bandyopadhyay, and M. Razeghi Applied Physics Letters, Vol. 100, Np. 8, p. 081106-1-- August 20, 2012 ...[Visit Journal] Angled cavity broad area quantum cascade lasers (QCLs) are investigated with surface gratingbased
distributed feedback (DFB) mechanisms. It is found that an angled cavity incorporating a one dimensional DFB with grating lines parallel to the laser facet offers the simplest solution for
single mode and diffraction limited emission in the facet normal direction. A room temperature
single mode QCL with the highest output power for wavelengths longer than 10 micron is demonstrated. This structure could be applied to a wide range of laser structures for power scaling along with spectral and spatial beam control. [reprint (PDF)] |
1. | Highly temperature insensitive quantum cascade lasers Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal] An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)] |
1. | Hybrid green LEDs based on n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN C. Bayram, F. Hosseini Teherani, D.J. Rogers and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7217-0P-- January 26, 2009 ...[Visit Journal] Hybrid green light-emitting diodes (LEDs) comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN were grown on semi-insulating AlN/sapphire using pulsed laser deposition for the n-ZnO and metal organic chemical vapor deposition for the other layers. X-ray diffraction revealed that high crystallographic quality was preserved after the n- ZnO growth. LEDs showed a turn-on voltage of 2.5 V and a room temperature electroluminescence (EL) centered at 510 nm. A blueshift and narrowing of the EL peak with increasing current was attributed to bandgap renormalization. The results indicate that hybrid LED structures could hold the prospect for the development of green LEDs with superior performance. [reprint (PDF)] |
1. | Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type delta-doping C. Bayram, J.L. Pau, R. McClintock and M. Razeghi Applied Physics Letters, Vol. 92, No. 24, p. 241103-1-- June 16, 2008 ...[Visit Journal] High quality delta-doped p-GaN is used as a means of improving the performance of back-illuminated GaN avalanche photodiodes (APDs). Devices with delta-doped p-GaN show consistently lower leakage current and lower breakdown voltage than those with bulk p-GaN. APDs with delta-doped p-GaN also achieve a maximum multiplication gain of 5.1×104, more than 50 times higher than that obtained in devices with bulk p-GaN. The better device performance of APDs with delta-doped p-GaN is attributed to the higher structural quality of the p-GaN layer achieved via delta-doping. [reprint (PDF)] |
1. | Materials characterization of n-ZnO/p-GaN:Mg/c-Al(2)O(3) UV LEDs grown by pulsed laser deposition and metal-organic chemical vapor deposition D. Rogers, F.H. Teherani, P. Kung, K. Minder, and M. Razeghi Superlattices and Microstructures-- April 1, 2007 ...[Visit Journal] n-ZnO/p-GaN:Mg hybrid heterojunctions grown on c-Al2O3 substrates showed 375 nm room temperature electroluminescence. It was suggested that the high materials and interface quality obtained using pulsed laser deposition for the n-ZnO growth and metal–organic chemical vapor deposition for the p-GaN:Mg were key factors enabling the injection of holes and the radiative near band edge recombination in the ZnO. In this paper we present the materials characterization of this structure using x-ray diffraction, scanning electron microscopy and atomic force microscopy. [reprint (PDF)] |
Page 19 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|