Page 19 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21  >> Next  (512 Items)

1.  Broadband, Tunable, and Monolithic Quantum Cascade Lasers
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken.
Semiconductor lasers; (140.3600) Lasers, tunable-- May 19, 2017 ...[Visit Journal]
This article describes the state of research and recent developments related to broadband quantum cascade lasers. Monolithic tuning and system development is also discussed. [reprint (PDF)]
 
1.  High power, electrically tunable quantum cascade lasers
Steven Slivken; Manijeh Razeghi
Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics-- February 13, 2016 ...[Visit Journal]
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser. [reprint (PDF)]
 
1.  High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition
J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow
Virtual Journal of Nanoscale Science and Technology 9 (12)-- March 29, 2004 ...[Visit Journal][reprint (PDF)]
 
1.  New frontiers in InP based quantum devices
Manijeh Razeghi
Indium Phosphide and Related Materials, 2008. IPRM 2008. 20th International Conference on, pp.1,4, (2008)-- May 29, 2008 ...[Visit Journal]
Recent research activities taking place at center for quantum devices (CQD) based on InP material system, especially the exploration and demonstration of the state-of-art high performance quantum cascade lasers (QCL), greatly facilitate the understanding of the underlining physical principles governing the device operation. Thanks to the endless effort putting into the semiconductor epitaxy technologies, including the Molecular Beam Epitaxy (MBE) and low pressure metal organic chemical vapor deposition (LP-MOCVD), the world has seen a close approaching to the ultimate band gap engineering. Highly sophisticated man-made heterostructure, which incorporates hundreds of alternating layers of GaInAs/AlInAs with each layer thickness and composition specifically designed, can be created within a single growth. The material quality is evidenced by the atomically abrupt interfaces. The versatility of the band gap engineering is greatly enhanced by the strain-balanced technique, which allows for growing structures with continuously tunable conduction band offset with little defects. As a result, the room temperature continuous wave (CW) wall plug efficiency (WPE) and the maximum achievable output optical power from a single device have been constantly improving. Novel waveguide incorporating the photonic crystal distributed feedback (PCDFB) mechanism is also investigated with satisfactory preliminary results. [reprint (PDF)]
 
1.  LEO of III-Nitride on Al2O3 and Si Substrates
M. Razeghi, P. Kung, P. Sandvik, K. Mi, X. Zhang, V.P. Dravid, J. Freitas, and A. Saxler
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Lateral epitaxial overgrowth (LEO) has recently become the method of choice to reduce the density of dislocations in heteroepitaxial GaN thin films, and is thus expected to lead to enhanced performance devices. We present here the LEO growth and characterization of GaN films by low pressure metalorganic chemical vapor deposition. Various substrates were used, including basal plane sapphire and oriented Si substrates. The steps in the LEO growth technology will be briefly reviewed. The characterization results will be discussed in detail. The structural, electrical and optical properties of the films were assessed through scanning, atomic and transmission electron microscopy, x-ray diffraction, capacitance-voltage, deep level transient spectroscopy, photoluminescence, and scanning cathodoluminenscence measurements. Single-step and double- step LEO GaN was achieved on sapphire. Similarly high quality LEO grown GaN films were obtained on sapphire and silicon substrates. Clear and dramatic reduction in the density of defects are observed in LEO grown materials using the various characterization techniques mentioned previously. [reprint (PDF)]
 
1.  High-Performance Focal Plane Arrays Based on InAs-GaSb Superlattices with a 10-micron Cutoff Wavelegth
P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 5, p. 462-467-- May 1, 2008 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs/GaSb superlattices grown on N-type GaSb substrate with a 50%-cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
1.  III-Nitride Avalanche Photodiodes
P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal]
Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)]
 
1.  Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window
H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel
IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  On the interface properties of ZnO/Si electroluminescent diodes
J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010 ...[Visit Journal]
ZnO layers grown on n–Si(100), n+–Si(100), and n–Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. [reprint (PDF)]
 
1.  Intrinsic AlGaN photodetectors for the entire compositional range
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal]
AlxGa1-xN ultraviolet photoconductors with cut- off wavelengths from 365 nm to 200 nm have been fabricated and characterized. Various characteristics of the devices, such as photoresponse, voltage-dependent responsivity, frequency-dependent responsivity and noise spectral density, were measured and cross-referenced with optical, electrical and structural characteristics of the material to provide information about the mechanisms taking place during detection. The maximum detectivity reached 5.5 X 108 cm·Hz½/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1-xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 msec. The frequency-dependent noise-spectrum shows that it is dominated by Johnson-noise at high frequencies for low Al-composition samples. [reprint (PDF)]
 
1.  Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range
H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)]
 
1.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
1.  Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection
B.M. Nguyen, S. Bogdanov, S. Abdollahi Pour, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 18, p. 183502-- November 2, 2009 ...[Visit Journal]
We present a hybrid photodetector design that inherits the advantages of traditional photoconductive and photovoltaic devices. The structure consists of a barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. By using the M-structure superlattice as a barrier region, the band alignments can be experimentally controlled, allowing for the efficient extraction of the photosignal with less than 50 mV bias. At 77 K, a 14 µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W, and the associated shot noise detectivity of 4×1010 Jones. [reprint (PDF)]
 
1.  Ultraviolet Detectors for AstroPhysics Present and Future
M. Ulmer, M. Razeghi, and E. Bigan
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal]
Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)]
 
1.  Room temperature neagtive differential resistance characteristics of polar III-nitride resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 9, p. 092104-1-- August 30, 2010 ...[Visit Journal]
III-nitride resonant tunneling diodes (RTDs), consisting Al0.2Ga0.8N/GaN double-barrier (DB) active layers, were grown on c-plane lateral epitaxial overgrowth (LEO) GaN/sapphire and c-plane freestanding (FS) GaN. RTDs on both templates, fabricated into mesa diameters ranging from 5 to 35 μm, showed negative differential resistance (NDR) at room temperature. NDR characteristics (voltage and current density at NDR onset and current-peak-to-valley ratio) were analyzed and reported as a function of device size and substrate choice. Our results show that LEO RTDs perform as well as FS ones and DB active layer design and quality have been the bottlenecks in III-nitride RTDs. [reprint (PDF)]
 
1.  Monolithic, steerable, mid-infrared laser realized with no moving parts
Slivken S, Wu D, Razeghi M
Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal]
The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)]
 
1.  Solar-blind photodetectors and focal plane arrays based on AlGaN
R. McClintock, M. Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 955502-- August 25, 2015 ...[Visit Journal]
III-Nitride material system (AlGaInN) possesses unique optical, electrical and structural properties such as a wide tunable direct bandgap, inherent fast carrier dynamics; good carrier transport properties, high breakdown fields; and high robustness and chemical stability. Recent technological advances in the wide bandgap AlGaN portion of this material system have led to a renewed interest in ultraviolet (UV) photodetectors. These detectors find use in numerous applications in the defense, commercial and scientific arenas such as covert space-to-space communications, early missile threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy.1,2,3 Back illuminated detectors operating in the solar blind region are of special interest. Back illumination allows the detector to be hybridized to a silicon read-out integrated circuit, epi-side down, and still collect light through the back of the transparent sapphire substrate. This allows the realization of solar blind focal plane arrays (FPAs) for imaging applications. Solar-blind FPAs are especially important because of the near total absence of any background radiation in this region. In this talk, we will present our recent back-illuminated solar-blind photodetector, mini-array, and FPA results. By systematically optimizing the design of the structure we have realized external quantum efficiencies (EQE) of in excess of 89% for pixel-sized detectors. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. At the same time, the dark current remains below ~2 × 10-9 A/cm² even at 10 volts of reverse bias. The detector has a very sharp falloff starting at 275 with the UV-solar rejection of better than three orders of magnitude, and a visible rejection ratio is more than 6 orders of magnitude. This high performance photodetector design was then used as the basis of the realization of solar-blind FPA. We demonstrated a 320×256 FPA with a peak detection wavelength of 278nm. The operability of the FPA was better than 92%, and excellent corrected imaging was obtained. [reprint (PDF)]
 
1.  Quantum dot in a well infrared photodetectors for high operating temperature focal plane arrays
S. Tsao, T. Yamanaka, S. Abdollahi Pour, I-K Park, B. Movaghar and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7234-0V-- January 25, 2009 ...[Visit Journal]
InAs quantum dots embedded in InGaAs quantum wells with InAlAs barriers on InP substrate grown by metalorganic chemical vapor deposition are utilized for high operating temperature detectors and focal plane arrays in the middle wavelength infrared. This dot-well combination is unique because the small band offset between the InAs dots and the InGaAs well leads to weak dot confinement of carriers. As a result, the device behavior differs significantly from that in the more common dot systems that have stronger confinement. Here, we present energy level modeling of our QD-QW system and apply these results to interpret the detector behavior. Detectors showed high performance with D* over 1010 cm·Hz1/2W-1 at 150 K operating temperature and with high quantum efficiency over 50%. Focal plane arrays have been demonstrated operating at high temperature due to the low dark current observed in these devices. [reprint (PDF)]
 
1.  Interface-induced Suppression of the Auger Recombination in Type-II InAs/GaSb Superlattices
H. Mohseni, V.I. Litvinov and M. Razeghi
Physical Review B 58 (23)-- December 15, 1998 ...[Visit Journal]
The temperature dependence of the nonequilibrium carriers lifetime has been deduced from the measurement of the photocurrent response in InAs/GaSb superlattices. Based on the temperature dependence of the responsivity and modeling of the transport parameters we have found that the carrier lifetime weakly depends on temperature in the high-temperature region. This indicates the temperature dependence of the Auger recombination rate with no threshold that differs it from that in the bulk material and can be attributed to the interface-induced suppression of the Auger recombination in thin quantum wells. [reprint (PDF)]
 
1.  High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm
J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi
Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal]
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)]
 
1.  High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays
M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy
SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal]
Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)]
 
1.  Type-II InAs/GaSb Superlattice Focal Plane Arrays for High-Performance Third Generation Infrared Imaging and Free-Space Communication
M. Razeghi, A. Hood and A. Evans
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Optoelectronic Integrated Circuits IX, Vol. 6476, p. 64760Q-1-9-- January 29, 2007 ...[Visit Journal]
Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high speed data networks providing highly secure, short to long range, and high bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's uptime. By moving the operating wavelength into the mid or long wavelength infrared enhanced link uptimes and increased range can be achieved due to less susceptibility atmospheric affects. The combination of room temperature, continuous wave' high power quantum cascade lasers and high operating temperature Type-II superlattice photodetectors offers the benefits of mid and long wavelength infrared systems as well as practical operating conditions. [reprint (PDF)]
 
1.  280 nm UV LEDs Grown on HVPE GaN Substrates
A. Yasan, R. McClintock, K. Mayes, S.R. Darvish, P. Kung, M. Razeghi, and R.J. Molnar
Opto-Electronics Review, 10 (4)-- January 1, 2002 ...[Visit Journal]
We report on the enhancement of optical and electrical properties of 280 nm UV LEDs using low dislocation density HVPE-grown GaN substrate. Compared with the same structure grown on sapphire, these LEDs show ~30% reduction in current-voltage differential resistance, ~15% reduction in turn-on voltage, more than 200% increase in output power slope efficiency and saturation at higher currents. Lower density of defects due to higher material quality and better heat dissipation are believed to be the reason behind these improvements. [reprint (PDF)]
 
1.  Quantum Dot Intersubband Photodetectors
C. Jelen, M. Erdtmann, S. Kim, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
Quantum dots are recognized as very promising candidates for the fabrication of intersubband photodetectors in the infrared spectral range. At present, material quality is making rapid progress and some devices have been demonstrated. Examples of mid-infrared quantum dot intersubband photodetectors are presented along with device design and data analysis. Nonetheless, the performance of these devices remains less than comparable quantum well intersubband photodetectors due to difficulties in controlling the quantum dot size and distribution during epitaxy. [reprint (PDF)]
 
1.  Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020 ...[Visit Journal]
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 

Page 19 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  20 21  >> Next  (512 Items)