| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 2 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
| 5. | Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8 ...[Visit Journal] In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode
(SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb
H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. [reprint (PDF)] |
| 5. | High operability 1024 x 1024 long wavelength Type-II superlattice focal plane array A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi IEEE Journal of Quantum Electronics (JQE), Vol. 48, No. 2, p. 221-228-- February 10, 2012 ...[Visit Journal] Electrical and radiometric characterization results of a high-operability 1024 x 1024 long wavelength infrared type-II superlattice focal plane array are described. It demonstrates excellent quantum efficiency operability of 95.8% and 97.4% at operating temperatures of 81 K and 68 K, respectively. The external quantum efficiency is 81% without any antireflective coating. The dynamic range is 37 dB at 81 K and increases to 39 dB at 68 K operating temperature. The focal plane array has noise equivalent temperature difference as low as 27 mK and 19 mK at operating temperatures of 81 K and 68 K, respectively, using f/2 optics and an integration time of 0.13 ms. [reprint (PDF)] |
| 5. | Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021) ...[Visit Journal] We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. [reprint (PDF)] |
| 5. | Temperature dependence of threshold current density Jth and differential efficiency of High Power InGaAsP/GaAs ( λ = 0.8 μm) lasers H. Yi, J. Diaz, I. Eliashevich, M. Stanton, M. Erdtmann, X. He, L. Wang, and M. Razeghi Applied Physics Letters 66 (3)-- January 16, 1995 ...[Visit Journal] An experimental and theoretical study on temperature dependence of the threshold current density Jth and differential efficiency ηd for the InGaAsP/GaAs laser diodes emitting at λ=0.8 μm was performed. Threshold current density Jth increases and differential efficiency ηd decreases as temperature is increased mainly because of thermal broadening of the gain spectrum. However, the measured temperature dependence of Jth and ηd could not be explained when only this effect was considered. In this letter, the temperature dependence of momentum relaxation rate ℏ/τ of carriers was investigated by performing the photoluminescence study. At high temperature, increase of the momentum relaxation rate ℏ/τ leads to reduction of the gain and mobility and increase of the optical loss, causing higher Jth and lower ηd as experimentally observed. The resulting theoretical model provides a good explanation for the mechanism of the increase of Jth and decrease of ηd. [reprint (PDF)] |
| 5. | Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency F. Wang, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal] In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)] |
| 4. | Room Temperature, Continuous Wave Quantum Cascade Laser Grown Directly on a Si Wafer Steven Slivken and Manijeh Razeghi S. Slivken and M. Razeghi,, Journal of Quantum Electronics, Vol. 59, No. 4, doi: 10.1109/JQE.2023.3282710 ...[Visit Journal] We report the room temperature demonstration of a high power, continuous wave, LWIR quantum cascade laser grown directly on a Si substrate. A new wafer, based on a high efficiency, strain-balanced laser core was processed into a lateral injection buried heterostructure laser geometry. A pulsed efficiency of 11.1% was demonstrated at room temperature, with
an emission wavelength of 8.35 μm. With low fidelity, epilayer-up packaging, CW emission up to 343 K was also demonstrated, with a maximum output power of >0.7 W near room temperature. [reprint (PDF)] |
| 4. | Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal] An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)] |
| 4. | Very Long Wavelength GaAs/GaInP Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal] We demonstrate long wavelength quantum well infrared photodetectors with GaAs quantum wells and GaInP barriers grown using gas-source molecular beam epitaxy. Wafers were grown with varying well widths. The optimum well width was 75 angstrom, which resulted in a detection peak at 13 μm and a cutoff wavelength of 15 μm. Dark current measurements of the samples with 15 μm cutoff wavelength show low dark current densities. The dark current characteristics have been investigated as a function of temperature and electron density in the well and compared to a model which takes into account thermionic emission and thermally assisted tunneling. The model is used to extract a saturation velocity of 1.5 x 105 cm/s for electrons. The photoelectron lifetime before recapture has been deduced from this carrier velocity and photoconductive gain measurements. The lifetime is found to be approximately 5 ps. Preliminary focal plane array imaging is demonstrated. [reprint (PDF)] |
| 4. | Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal] A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)] |
| 4. | Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal] We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow
linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW.
The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)] |
| 4. | Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~ 4.36 μm B. Gokden, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 97, No. 13, p. 131112-1-- September 27, 2010 ...[Visit Journal] We demonstrate room temperature, high power, single mode, and diffraction limited operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.36 μm. Total peak power up to 34 W is observed from a 3 mm long laser with 400 μm cavity width at room temperature. Far-field profiles have M2 figure of merit as low as 2.5. This device represents a significant step toward realization of spatially and spectrally pure broad area high power quantum cascade lasers. [reprint (PDF)] |
| 4. | Responsivity and Noise Performance of InGaAs/InP Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, T. David, G. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal] Dark current nose measurements were carried out between 10 and 104 Hz at T = 80K on two InGaAs/InP quantum well IR photo detectors (QWIPs) designed for 8 μm IR detection. Using the measured noise data, we have calculated the thermal generation rate, bias-dependent gain, electron trapping probability, and electron diffusion length. The calculated thermal generation rate is similar to AlGaAs/GaAs QWIPs with similar peak wavelengths, but the gain is 50X larger, indicating improved transport and carrier lifetime are obtained in the binary InP barriers. As a result, a large responsivity of 7.5 A/W at 5V bias and detectivity of 5 X 1011 cm·Hz½/W at 1.2 V bias were measured for the InGaAs/InP QWIPs at T = 80K. [reprint (PDF)] |
| 4. | Impact of scaling base thickness on the performance of heterojunction phototransistors Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi Nanotechnology 28, 10LT01-- February 2, 2017 ...[Visit Journal] In this letter we report the effect of vertical scaling on the optical and electrical performance of
mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base
was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)] |
| 4. | Development of Quantum Cascade Lasers for High Peak Output Power and Low Threshold Current Density S. Slivken and M. Razeghi Solid State Electronics 46-- January 1, 2002 ...[Visit Journal] Design and material optimization are used to both decrease the threshold current density and increase the output power for quantum cascade lasers. Waveguides are designed to try and minimize free-carrier and surface-plasmon absorption. Excellent material characterization is also presented, showing excellent control over layer thickness, interface quality, and doping level. Experiments are done to both optimize the injector doping level and to maximize the output power from a single aperture. At 300 K, a threshold current density as low as 1.8 kA/cm² is reported, along with peak powers of approximately 2.5 W. Strain-balanced lasers are also demonstrated at λnot, vert, similar5 μm, exhibiting threshold current densities<300 A/cm² at 80 K. These values represent the state-of-the-art for mid-infrared lasers with λ>4 μm [reprint (PDF)] |
| 4. | Deep ultraviolet (254 nm) focal plane array E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011 ...[Visit Journal] We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
| 4. | World's first demonstration of type-II superlattice dual band 640 x 512 LWIR focal plane array E.K. Huang and M. Razeghi SPIE Proceedings, Vol. 8268, p. 82680Z-- January 22, 2012 ...[Visit Journal] High resolution multi-band infrared detection of terrestrial objects is useful in applications such as long range and high altitude surveillance. In this paper, we present a 640 x 512 type-II superlattice focal plane array (FPA) in the long-wave infrared (LWIR) suitable for such purposes, featuring 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red). The dual band camera is single-bump hybridized to an Indigo 30 μm pitch ISC0905 read-out integrated circuit. Test pixels revealed background limited behavior with specific detectivities as high as ~5x1011 Jones at 7.9 μm (blue) and ~1x1011 Jones at 10.2 μm (red) at 77K. [reprint (PDF)] |
| 4. | Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal] A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)] |
| 4. | High-responsivity GaInAs/InP Quantum Well Infrared Photodetectors Grown by Low-Pressure Metalorganic Chemical Vapor Deposition M. Erdtmann, A. Matlis, C. Jelen, M. Razeghi, and G. Brown SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] We have studied the dependence of the well doping density in n-type GaInAs/InP quantum well IR photodetectors (QWIPs) grown by low-pressure metalorganic chemical vapor deposition. Three identical GaInAs/InP QWIP structures were grown with well sheet carrier densities of 1x1011 cm-2, 3x1011 cm-2, and 10x1011 cm-2; all three samples had very sharp spectral response at λ equals 9.0 μm. We find that there is a large sensitivity of responsivity, dark current, noise current, and detectivity with the well doping density. Measurements revealed that the lowest-doped samples had an extremely low responsivity relative to the doping concentration while the highest-doped sample had an excessively high dark current relative to doping. The middle-doped sample yielded the optimal results. This QWIP had a responsivity of 33.2 A/W and operated with a detectivity of 3.5x1010 cm·Hz½·W-1 at a bias of 0.75 V and temperature of 80 K. This responsivity is the highest value reported for any QWIP in the (lambda) equals 8-9 &mus;m range. Analysis is also presented explaining the dependence of the measured QWIP parameters to well doping density. [reprint (PDF)] |
| 4. | EPR investigation of Gd3+ and Eu2+ in the α- and β-phases of lead phosphate M. RAZEGHI, J. P. BUISSON, and B. HOULIE M. RAZEGHI et al.: EPR Investigation of Gd3+ and Eu2+ in Lead Phosphate phys. stat. sol. (b) 96, 283 (1979-- September 1, 1979 ...[Visit Journal] The X-band EPR spectra of Gd3+and Eu2+diluted in Pb3(P04)2crystals are studied. Lead phos-phate exhibits a ferroelastic phase transition a t 180 “C and the EPR spectra obtained in eachphase differ from each other. The spectra are very complex because the zero field splitting hasthe same order of magnitude as the Zeeman term. The spin Hamiltonian parameters and theenergy levels are computed. “Forbidden” or “missing” transitions and line intensities can beexplained. [reprint (PDF)] |
| 4. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
| 4. | Modeling the electronic band-structure of strained long-wavelength Type-II superlattices using the scattering matrix method Abbas Haddadi,Gail Brown,Manijeh Razeghi Abbas Haddadi,Brown Gail and Razeghi Manijeh.Modeling the electronic band-structure of strained long-wavelength Type-II superlattices using the scattering matrix method[J].Journal of Infrared and Millimeter Waves,2025,44(3):345~350 ...[Visit Journal] This study introduces a comprehensive theoretical framework for accurately calculating the electronic
band-structure of strained long-wavelength InAs/GaSb type-II superlattices. Utilizing an eight-band k ⋅ p Hamilto⁃
nian in conjunction with a scattering matrix method, the model effectively incorporates quantum confinement,
strain effects, and interface states. This robust and numerically stable approach achieves exceptional agreement with experimental data, offering a reliable tool for analyzing and engineering the band structure of complex multi⁃
layer systems |
| 4. | Room Temperature Terahertz and Frequency Combs Based on Intersubband Quantum Cascade Laser Diodes: History and Future e Manijeh Razeghi , and Quanyong Lu Manijeh Razeghi, and Quanyong Lu Room Temperature Terahertz and Frequency Combs Based on Intersubband Quantum Cascade Laser Diodes: History and Futur Photonics 2025, 12(1), 79; ...[Visit Journal] : The year 2024 marks the 30-year anniversary of the quantum cascade laser (QCL),
which is becoming the leading laser source in the mid-infrared (mid-IR) range. Since
the first demonstration, QCL has undergone tremendous development in terms of the
output power, wall plug efficiency, spectral coverage, wavelength tunability, and beam
quality. Owing to its unique intersubband transition and fast gain features, QCL possesses
strong nonlinearities that makes it an ideal platform for nonlinear photonics like terahertz
(THz) difference frequency generation and direct frequency comb generation via fourwave mixing when group velocity dispersion is engineered. The feature of broadband,
high-power, and low-phase noise of QCL combs is revolutionizing mid-IR spectroscopy
and sensing by offering a new tool measuring multi-channel molecules simultaneously
in the µs time scale. While THz QCL difference frequency generation is becoming the
only semiconductor light source covering 1–5 THz at room temperature. In this paper, we
will introduce the latest research from the Center for Quantum Devices at Northwestern
University and briefly discuss the history of QCL, recent progress, and future perspective of
QCL research, especially for QCL frequency combs, room temperature THz QCL difference
frequency generation, and major challenges facing QCL in the future.
[reprint (PDF)] |
| 4. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194 ...[Visit Journal] Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
| 4. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal] This paper presents an overview of semiconductor ultraviolet (UV) detectors that are currently available and associated technologies that are undergoing further development. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further consideration are restricted to modern semiconductor UV detectors, so the current state-of-the-art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main effort are currently directed to a new generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
| 3. | High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
Page 2 of 19: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >> Next (466 Items)
|