| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 2 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (515 Items)
| 5. | Mid-infrared quantum cascade lasers with high wall plug efficiency Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal] We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)] |
| 5. | Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency F. Wang, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal] In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)] |
| 5. | Back-illuminated solar-blind photodetectors for imaging applications R. McClintock, A. Yasan, K. Mayes, P. Kung, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp.175-- January 22, 2005 ...[Visit Journal] Back-illuminated solar-blind ultraviolet p-i-n photodetectors and focal plane arrays are investigated. We initially study single-pixel devices and then discuss the hybridization to a read-out integrated circuit to form focal plane arrays for solar-blind UV imaging. [reprint (PDF)] |
| 5. | Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures W. Pan, D. Shahar, D.C. Tsui, H.P. Wei, and M. Razeghi Physical Review B 55 (23)-- June 15, 1997 ...[Visit Journal] We report a temperature- and current-scaling study of the quantum Hall liquid-to-insulator transition in an In1-xGaxAs/InP heterostructure. When the magnetic field is at the critical field Bc, ρxx=0.86h/e². Furthermore, the transport near Bc scales as |B- Bc|T-κ with κ=0.45±0.05, and as |B- Bc|I-b with b=0.23±0.05. The latter can be due to phonon emission in a dirty piezoelectric medium, or can be the consequence of critical behavior near Bc, within which z=1.0±0.1 and ν=2.1±0.3 are obtained from our data. [reprint (PDF)] |
| 5. | EPR investigation of Gd3+ and Eu2+ in the α- and β-phases of lead phosphate M. RAZEGHI, J. P. BUISSON, and B. HOULIE M. RAZEGHI et al.: EPR Investigation of Gd3+ and Eu2+ in Lead Phosphate phys. stat. sol. (b) 96, 283 (1979-- September 1, 1979 ...[Visit Journal] The X-band EPR spectra of Gd3+and Eu2+diluted in Pb3(P04)2crystals are studied. Lead phos-phate exhibits a ferroelastic phase transition a t 180 “C and the EPR spectra obtained in eachphase differ from each other. The spectra are very complex because the zero field splitting hasthe same order of magnitude as the Zeeman term. The spin Hamiltonian parameters and theenergy levels are computed. “Forbidden” or “missing” transitions and line intensities can beexplained. [reprint (PDF)] |
| 5. | High Thermal Stability of κ-Ga2O3 Grown by MOCVD Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals 2021, 11, 446. https://doi.org/ 10.3390/cryst11040446 ...[Visit Journal] We report a high thermal stability of kappa gallium oxide grown on c-plane sapphire substrate by metal organic chemical vapor deposition. Kappa gallium oxide is widely known as a metastable polymorph transitioning its phase when subjected to a high temperature. Here, we show the kappa gallium oxide whose phase is stable in a high temperature annealing process at 1000 °C. These oxide films were grown at 690 °C under nitrogen carrier gas. The materials showed high electrical resistivity when doped with silicon, whereas the film conductivity was significantly improved when doped with both indium and silicon. This work provides a pathway to overcoming limitations for the advance in utilizing kappa gallium oxide possessing superior electrical characteristics. [reprint (PDF)] |
| 5. | High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation D. H. Wu and M. Razeghi APL Materials 5, 035505-- March 21, 2017 ...[Visit Journal] We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64
μm
μm
. A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400
μm
μm
radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)] |
| 5. | Development of Quantum Cascade Lasers for High Peak Output Power and Low Threshold Current Density S. Slivken and M. Razeghi Solid State Electronics 46-- January 1, 2002 ...[Visit Journal] Design and material optimization are used to both decrease the threshold current density and increase the output power for quantum cascade lasers. Waveguides are designed to try and minimize free-carrier and surface-plasmon absorption. Excellent material characterization is also presented, showing excellent control over layer thickness, interface quality, and doping level. Experiments are done to both optimize the injector doping level and to maximize the output power from a single aperture. At 300 K, a threshold current density as low as 1.8 kA/cm² is reported, along with peak powers of approximately 2.5 W. Strain-balanced lasers are also demonstrated at λnot, vert, similar5 μm, exhibiting threshold current densities<300 A/cm² at 80 K. These values represent the state-of-the-art for mid-infrared lasers with λ>4 μm [reprint (PDF)] |
| 5. | Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal] In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)] |
| 4. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
| 4. | High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal] Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)] |
| 4. | Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal] A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)] |
| 4. | Extended short wavelength infrared heterojunction phototransistors based on type II superlattices Arash Dehzangi , Ryan McClintock, Donghai Wu , Abbas Haddadi, Romain Chevallier , and Manijeh Razeghi Applied Physics Letters 114, 191109-- May 17, 2019 ...[Visit Journal] A two terminal extended short wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb on a GaSb substrate is designed, fabricated, and investigated. With the base thickness of 40 nm, the device exhibited a 100% cut-off wavelength of 2.3 λ at 300 K.
The saturated peak responsivity value is 320.5 A/W at 300 K, under front-side illumination without any antireflection coating. A saturated
optical gain of 245 at 300K was measured. At the same temperature, the device exhibited a collector dark current density (at unity optical
gain) and a DC current gain of 7.8 X 103 A/cm² and 1100, respectively. The device exhibited a saturated dark current shot noise limited specific detectivity of 4.9 X 1011 cm·Hz½/W at 300 K which remains constant over a broad range of wavelengths and applied biases. [reprint (PDF)] |
| 4. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal] This paper presents an overview of semiconductor ultraviolet (UV) detectors that are currently available and associated technologies that are undergoing further development. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further consideration are restricted to modern semiconductor UV detectors, so the current state-of-the-art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main effort are currently directed to a new generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
| 4. | III-Nitride/Ga2O3 heterostructure for future power electronics: opportunity and challenges Nirajman Shrestha, Jun Hee Lee, F. H. Teherani, Manijeh Razeghi Proc. of SPIE Vol. 12895, Quantum Sensing and Nano Electronics and Photonics XX, 128950B (28 January - 1 February 2024, San Francisco)http://dx.doi.org/10.1117/12.3011688 ...[Visit Journal] Ga2O3 has become the new focal point of high-power semiconductor device research due to its superior capability
to handle high voltages in smaller dimensions and with higher efficiencies compared to other commercialized
semiconductors. However, the low thermal conductivity of the material is expected to limit device performance. To
compensate for the low thermal conductivity of Ga2O3 and to achieve a very high density 2-dimensional electron
gas (2DEG), an innovative idea is to combine Ga2O3 with III-Nitrides (which have higher thermal conductivity),
such as AlN. However, metal-polar AlN/β-Ga2O3 heterojunction provides type-II heterojunction which are
beneficial for optoelectronic application, because of the negative value of specific charge density. On the other
hand, N-polar AlN/β- Ga2O3 heterostructures provide higher 2DEG concentration and larger breakdown voltage
compared to conventional AlGaN/GaN devices. This advancement would allow the demonstration of RF power
transistors with a 10x increase in power density compared to today’s State of the Art (SoA) and provide a solution
to size, weight, and power-constrained applications [reprint (PDF)] |
| 4. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
| 4. | High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers S. Slivken, A. Evans, J. David, and M. Razeghi Virtual Journal of Nanoscience & Technology 9-- December 9, 2002 ...[Visit Journal][reprint (PDF)] |
| 4. | High Detectivity InGaAs/InGaP Quantum-Dot Infrared Photodetectors Grown by Low Pressure Metalorganic Chemical Vapor Deposition J. Jiang, S. Tsao, T. O'Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G.J. Brown, and M.Z. Tidrow Virtual Journal of Nanoscale Science and Technology 9 (12)-- March 29, 2004 ...[Visit Journal][reprint (PDF)] |
| 4. | Room Temperature Terahertz and Frequency Combs Based on Intersubband Quantum Cascade Laser Diodes: History and Future e Manijeh Razeghi , and Quanyong Lu Manijeh Razeghi, and Quanyong Lu Room Temperature Terahertz and Frequency Combs Based on Intersubband Quantum Cascade Laser Diodes: History and Futur Photonics 2025, 12(1), 79; ...[Visit Journal] : The year 2024 marks the 30-year anniversary of the quantum cascade laser (QCL),
which is becoming the leading laser source in the mid-infrared (mid-IR) range. Since
the first demonstration, QCL has undergone tremendous development in terms of the
output power, wall plug efficiency, spectral coverage, wavelength tunability, and beam
quality. Owing to its unique intersubband transition and fast gain features, QCL possesses
strong nonlinearities that makes it an ideal platform for nonlinear photonics like terahertz
(THz) difference frequency generation and direct frequency comb generation via fourwave mixing when group velocity dispersion is engineered. The feature of broadband,
high-power, and low-phase noise of QCL combs is revolutionizing mid-IR spectroscopy
and sensing by offering a new tool measuring multi-channel molecules simultaneously
in the µs time scale. While THz QCL difference frequency generation is becoming the
only semiconductor light source covering 1–5 THz at room temperature. In this paper, we
will introduce the latest research from the Center for Quantum Devices at Northwestern
University and briefly discuss the history of QCL, recent progress, and future perspective of
QCL research, especially for QCL frequency combs, room temperature THz QCL difference
frequency generation, and major challenges facing QCL in the future.
[reprint (PDF)] |
| 4. | Very High Average Power Quantum Cascade Lasers by GasMBE S. Slivken and M. Razeghi SPIE Conference, San Jose, CA, Vol. 4999, pp. 59-- January 27, 2003 ...[Visit Journal] Very high average power QCLs are demonstrated within the 5.8 - 9 µm wavelength range. At longer wavelengths, scaling of the power is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 3.5 W of peak power per facet has been demonstrated at room temperature for a single 25 µm by 3 mm diode, with an average power of 150 mW at 6% duty cycle. At shorter wavelengths, highly strain-balanced heterostructures are used to create a high coduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we demonstrate 225 mW of average power from a single facet at room temperature. Increasing the conduction band offset further and optimizing the doping in the injector region has led to demonstration of > 250 mW average power (λ = 5.8 µm) at > 50% duty cycle for a 20 µm by 2 mm HR coated diode bonded epilayer-down to a copper heatsink. Also at room temperature, use of Au electroplating and wider ridges has allowed us to further demonstrate without epilayer-down bonding, 0.67 W average power at 17% duty cycle from a single 40 µm by 2 mm HR coated laser. [reprint (PDF)] |
| 4. | Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal] Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)] |
| 4. | Growth and Optimization of GaInAsP/InP Material System for Quantum Well Infrared Photodetector Applications M. Erdtmann, J. Jiang, A. Matlis, A. Tahraoui, C. Jelen, M. Razeghi, and G. Brown SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Multi-quantum well structures of GaxIn1-xAsyP1-y were grown by metalorganic chemical vapor deposition for the fabrication of quantum well IR photodetectors. The thickness and composition of the wells was determined by high-resolution x-ray diffraction and photoluminescence experiments. The intersubband absorption spectrum of the Ga0.47In0.53As/InP, Ga0.38In0.62As0.80P0.20 (1.55 μm)/InP, and Ga0.27In0.73As0.57P0.43 (1.3 μm))/InP quantum wells are found to have cutoff wavelengths of 9.3 μm, 10.7 micrometers , and 14.2 μm respectively. These wavelengths are consistent with a conduction band offset to bandgap ratio of approximately 0.32. Facet coupled illumination responsivity and detectivity are reported for each composition. [reprint (PDF)] |
| 4. | Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model H.K. Lee, K.S. Chung, J.S. Yu and M. Razeghi Physica Status Solidi (a), Vol. 206, p. 356-362-- February 1, 2009 ...[Visit Journal] We have theoretically investigated and compared the thermal characteristics of 10.6 μm InGaAs/InAlAs/InP buried heterostructure (BH) quantum cascade lasers (QCLs) with different heat-sinking configurations by a steady-state heat-transfer analysis. The heat-source densities were obtained from laser threshold power densities measured experimentally under room-temperature continuous-wave mode. The two-dimensional anisotropic heat-dissipation model was used to calculate the temperature distribution, heat flux, and thermal conductance (Gth) inside the device. For good thermal characteristics, the QCLs in the long-wavelength infrared region require the relatively narrow BH structure in combination with epilayer-down bonding due to thick active core/cladding layers and high insulator losses. The single-ridge BH structure results in slightly higher thermal conductance by 2-4% than the double-channel (DC) ridge BH structure. For W = 12 m with 5 μm thick electroplated Au, the single-ridge BH laser with epilayer-down bonding exhibited the highest Gth value of 201.9 W/K cm2, i.e. increased by nearly 36% with respect to the epilayer-up bonded DC ridge waveguide laser. This value is improved by 50% and 62% with respect to the single-ridge BH laser and DC ridge waveguide laser with W = 20 μm in the epilayer-up bonding scheme, respectively. [reprint (PDF)] |
| 4. | Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal] InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)] |
| 4. | Deep ultraviolet (254 nm) focal plane array E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011 ...[Visit Journal] We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
Page 2 of 21: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 >> Next (515 Items)
|