Page 21 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21    (512 Items)

1.  Highly Conductive Co-Doped Ga2O3Si-In Grown by MOCVD
Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi
Coatings 2021, 11(3), 287; https://doi.org/10.3390/coatings11030287 ...[Visit Journal]
We report a highly conductive gallium oxide doped with both silicon and indium grown on c-plane sapphire substrate by MOCVD. From a superlattice structure of indium oxide and gallium oxide doped with silicon, we obtained a highly conductive material with an electron hall mobility up to 150 cm2/V·s with the carrier concentration near 2 × 1017 cm−3. However, if not doped with silicon, both Ga2O3:In and Ga2O3 are highly resistive. Optical and structural characterization techniques such as X-ray, transmission electron microscope, and photoluminescence, reveal no significant incorporation of indium into the superlattice materials, which suggests the indium plays a role of a surfactant passivating electron trapping defect levels. [reprint (PDF)]
 
1.  Type-II ‘M’ Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes
B-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64790S-1-10-- January 29, 2007 ...[Visit Journal]
In this work, an AlSb-containing Type-II InAs/GaSb superlattice, the so-called M-structure, is presented as a candidate for mid and long wavelength infrared detection devices. The effect of inserting an AlSb barrier in the GaSb layer is discussed and predicts many promising properties relevant to practical use. A good agreement between the theoretical calculation based on Empirical Tight Binding Method framework and experimental results is observed, showing the feasibility of the structure and its properties. A band gap engineering method without material stress constraint is proposed. [reprint (PDF)]
 
1.  Miniaturization: enabling technology for the new millennium
M. Razeghi and H. Mohseni
SPIE International Conference on Solid State Crystals, Zakopane, Poland, -- April 1, 2001 ...[Visit Journal]
The history of semiconductor devices has been characterized by a constant drive toward lower dimensions in order to increase integration density, system functionality and performance. However, this is still far from being comparable with the performance of natural systems such as human brain. The challenges facing semiconductor technologies in the millennium will be to move toward miniaturization. The influence of this trend on the quantum sensing of infrared radiation is one example that is elaborated here. A new generation of infrared detectors has been developed by growing layers of different semiconductors with nanometer thicknesses. The resulted badgap engineered semiconductor has superior performance compared to the bulk material. To enhance this technology further, we plan to move from quantum wells to quantum wire and quantum dots. [reprint (PDF)]
 
1.  Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
F. Wang, S. Slivken, D. H. Wu, Q. Y. Lu, and M. Razeghi
AIP Advances 10, 055120-- May 19, 2020 ...[Visit Journal]
In this paper, we report a post-polishing technique to achieve nearly complete surface planarization for the buried ridge regrowth processing of quantum cascade lasers. The planarized device geometry improves the thermal conduction and reliability and, most importantly, enhances the power and efficiency in continuous wave operation. With this technique, we demonstrate a high continuous wave wall-plug efficiency of an InP-based quantum cascade laser reaching ∼41% with an output power of ∼12 W from a single facet operating at liquid nitrogen temperature. At room temperature, the continuous wave output power exceeds the previous record, reaching ∼5.6 W. [reprint (PDF)]
 
1.  Two‐dimensional electron gas in a In0.53Ga0.47As‐InP heterojunction grown by metalorganic chemical vapor deposition
Y. Guldner; J. P. Vieren; P. Voisin; M. Voos; M. Razeghi; M. A. Poisson
Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, M. Razeghi, M. A. Poisson; Two‐dimensional electron gas in a In0.53Ga0.47As‐InP heterojunction grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 15 May 1982; 40 (10): 877–879.-- April 15, 1982 ...[Visit Journal]
We report, from Shubnikov-de Haas and cyclotron resonance experiments, the first observation of a two-dimensional, high-mobility electron gas in a selectively doped 1110.53 G~l.47 As-InP heterojunction grown by metalorganic chemical vapor deposition. Several parameters of the electronic system under consideration are determined. [reprint (PDF)]
 
1.  Long-Wavelength InAsSb Photoconductors Operated at Near Room Temperatures (200-300 K)
J.D. Kim, D. Wu, J. Wojkowski, J. Piotrowski, J. Xu, and M. Razeghi
Applied Physics Letters., 68 (1),-- January 1, 1996 ...[Visit Journal]
Long-wavelength InAs1−xSbx photoconductors operated without cryogenic cooling are reported. The devices are based on p-InAs1−xSbx/p-InSb heterostructures grown on (100) semi-insulating GaAs substrates by low pressure metalorganic chemical vapor deposition (LP‐MOCVD). Photoreponse up to 14 μm has been obtained in a sample with x=0.77 at 300 K, which is in good agreement with the measured infrared absorption spectra. The corresponding effective lifetime of ≊0.14 ns at 300 K has been derived from stationary photoconductivity. The Johnson noise limited detectivity at λ=10.6 μm is estimated to be about 3.27×107 cm· Hz½/W at 300 K. [reprint (PDF)]
 
1.  AlGaN ultraviolet detectors
M. Razeghi and A. Rogalski,
SPIE Conference, San Jose, CA, -- February 12, 1997 ...[Visit Journal]
Hitherto, the semiconductor ultraviolet (UV) detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main efforts are currently directed to anew generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is described in detail. [reprint (PDF)]
 
1.  High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron
S. Slivken, A. Evans, W. Zhang and M. Razeghi
Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 ...[Visit Journal]
In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact. [reprint (PDF)]
 
1.  Pulse Autocorrelation Measurements Based on Two- and Three-Photon Conductivity in a GaN Photodiode
A. Streltsov, K.D. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi
Applied Physics Letters 75 (24)-- December 13, 1999 ...[Visit Journal]
We characterize the performance of a GaN p-i-n photodiode as a nonlinear sensor for second- and third-order femtosecond pulse autocorrelation measurements in the visible and near-infrared regimes, respectively. The two- and three-photon absorption coefficients for GaN are also determined. [reprint (PDF)]
 
1.  High-Power Continuous-Wave Operation of a 6 µm Quantum-Cascade Laser at Room Temperature
J.S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi
Applied Physics Letters, 83 (13)-- September 29, 2003 ...[Visit Journal]
We report continuous-wave (cw) operation of quantum-cascade lasers (λ= 6 µm) using a thick electroplated Au top contact layer and epilayer-up bonding on a copper heat sink up to a temperature of 308 K (35 °C). The high cw optical output powers of 132 mW at 293 K and 21 mW at 308 K are achieved with threshold current densities of 2.29 and 2.91 kA/cm², respectively, for a high-reflectivity-coated 15 µm wide and 2 mm long laser. [reprint (PDF)]
 
1.  Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020 ...[Visit Journal]
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 
1.  On the interface properties of ZnO/Si electroluminescent diodes
J.L. Pau, J. Piqueras, D.J. Rogers, F. Hosseini Teherani, K. Minder, R. McClintock, and M. Razeghi
Journal of Applied Physics, Vol. 107, No. 3, p. 033719-1-- February 1, 2010 ...[Visit Journal]
ZnO layers grown on n–Si(100), n+–Si(100), and n–Si(111) substrates by pulsed-laser deposition were found to give electroluminescence. Light emission was observed in the form of discrete spots for currents over 1 mA with a white appearance to the naked eye. The intensity of these spots showed an erratic behavior over time, appearing and disappearing at random, while showing an associated random telegraph noise in the current signal. Regardless the substrate used, the electroluminescence spectra had a main broadband emission centered at about 600 nm and a relatively small peak at around 380 nm which corresponds to the energy of ZnO near band edge emission. Furthermore, the devices exhibited rectifying characteristics, whose current blocking direction depended on the substrate orientation. Optimization of ZnO conductivity and performing sample growth in N2 ambient were found to be critical to enhance the emission intensity. Rutherford backscattering characterization revealed the existence of an intermixed region at the interface between ZnO and Si. To study the electronic properties at the interface, frequency dependent capacitance measurements were carried out. The junction capacitance became frequency dependent at the bias voltages at which light emission occurs due to the relatively slow trapping and generation processes at deep centers. These centers are believed to play an important role in the mechanism of light emission. [reprint (PDF)]
 

Page 21 of 21:  Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21    (512 Items)