About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 21 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
1. | Photovoltaic effects in GaN structures with p-n junction X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi Applied Physics Letters 67 (14)-- October 2, 1995 ...[Visit Journal] Large-area GaN photovoltaic structures with p-n junctions have been fabricated using atmospheric pressure metalorganic chemical vapor deposition. The photovoltaic devices typically exhibit selective spectral characteristics with two narrow peaks of opposite polarity. This can be related to p-n junction connected back‐to‐back with a Schottky barrier. The shape of the spectral characteristic is dependent on the thickness of the n- and p-type regions. The diffusion length of holes in the n-type GaN region, estimated by theoretical modeling of the spectral response shape, was about 0.1 μm. [reprint (PDF)] |
1. | On the performance and surface passivation of type-II InAs/GaSb superlattice photodiodes for the very-long- wavelength infrared A. Hood, M. Razeghi, E. Aifer, G.J. Brown Applied Physics Letters 87 (1)-- October 10, 2005 ...[Visit Journal] We demonstrate very-long-wavelength infrared Type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength (λc,50%) of 17 μm. We observed a zero-bias, peak Johnson noise-limited detectivity of 7.63×109 cm·Hz½/W at 77 K with a 90%-10% cutoff width of 17 meV, and quantum efficiency of 30%. Variable area diode zero-bias resistance-area product (R0A) measurements indicated that silicon dioxide passivation increased surface resistivity by nearly a factor of 5, over unpassivated photodiodes, and increased overall R0A uniformity. The bulk R0A at 77 K was found to be 0.08 Ω·cm2, with RA increasing more than twofold at 25 mV reverse bias. [reprint (PDF)] |
1. | High-quality visible-blind AlGaN p-i-n photodiodes E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sanchez, and M. Razeghi Applied Physics Letters 74 (8)-- February 22, 1999 ...[Visit Journal] We report the fabrication and characterization of AlxGa1−xN p-i-n photodiodes (0 < x < 0.15) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The devices present a visible rejection of six orders of magnitude with a cutoff wavelength that shifts from 365 to 338 nm. Photocurrent decays are exponential for high load resistances, with a time constant that corresponds to the RC product of the system. For low load resistances, the transient response becomes non-exponential, with a decay time longer than the RC constant. This behavior is justified by the strong frequency dependence of the device capacitance. By an admittance analysis, we conclude that speed is not limited by deep levels, but by substitutional Mg capture and emission time. [reprint (PDF)] |
1. | Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)] |
1. | Very High Average Power at Room Temperature from λ ~ 5.9 μm Quantum Cascade Lasers J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi Virtual Journal of Nanoscale Science & Technology 26-- May 26, 2003 ...[Visit Journal][reprint (PDF)] |
1. | High Detectivity GaInAs/InP Quantum Well Infrared Photodetectors Grown on Si Substrates J. Jiang, C. Jelen, M. Razeghi and G.J. Brown IEEE Photonics Technology Letters 14 (3)-- March 1, 2002 ...[Visit Journal] In this letter, we report an improvement in the growth and the device performance of GaInAs-InP quantum well infrared photodetectors grown on Si substrates. Material growth techniques, like low-temperature nucleation layers and thick buffer layers were used to grow InP on Si. An in situ thermal cycle annealing technique was used to reduce the threading dislocation density in the InP-on-Si. Detector dark current was reduced 2 orders of magnitude by this method. Record high detectivity of 2.3 × 109 cm·Hz½·W-1 was obtained for QWIP-on-Si detectors in the 7-9 μm range at 77 K [reprint (PDF)] |
1. | Photoluminescence study of InAsSb/InAsSbP heterostructures grown by low-pressure metalorganic chemical vapor deposition S. Kim, M. Erdtmann, D. Wu, E. Kaas, H. Yi, J. Diaz, and M. Razeghi Applied Physics Letters 69 (11)-- September 9, 1996 ...[Visit Journal] Photoluminescence has been measured for double‐ and separate‐confinement InAsSb/InAsSbP heterostructures grown by low‐pressure metalorganic vapor deposition. A measurement of the integrated luminescence intensity at the temperature range of 77–300 K shows that over a wide range of excitation level (1–5×10² W/cm²) the radiative transitions are the dominant. mechanism below T∼170 K. Auger recombination coefficient C=C0 exp(−Ea/kT) with C0≊5×10−27 cm6/s and Ea≊40 meV has been estimated. [reprint (PDF)] |
1. | Room-temperature, high-power and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm S.R. Darvish, S. Slivken, A. Evans, J.S. Yu, and M. Razeghi Applied Physics Letters, 88 (20)-- May 15, 2006 ...[Visit Journal] High-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers is reported. Continuous-wave output powers of 100 mW at 25 °C and 20 mW at 50 °C are obtained. The device exhibits a cw threshold current density of 1.34 kA/cm2, a maximum cw wall-plug efficiency of 1% at 25 °C, and a characteristic temperature of ~190 K in pulsed mode. Single-mode emission near 9.6 μm with a side-mode suppression ratio of ≥ 30 dB and a tuning range of 2.89 cm–1 from 15 to 50 °C is obtained. [reprint (PDF)] |
1. | Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications M. Razeghi SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal] Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)] |
1. | Electrical Transport Properties of Highly Doped N-type GaN Epilayers H.J. Lee, M.G. Cheong, E.K. Suh, and M. Razeghi SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal] Temperature-dependent Hall-effects in MOCVD-grown Si-doped GaN epilayers were measured as a function of temperature in the range 10-800 K. The results were satisfactorily analyzed in terms of a two-band model including the (Gamma) and impurity bands at lower temperatures than room. The (Gamma) band electrons are dominant only high temperatures. The ionized impurity scattering is the most important in the (Gamma) band except at very high temperatures. [reprint (PDF)] |
1. | A lifetime of contributions to the world of semiconductors using the Czochralski invention Manijeh Razeghi Journal of Vacuum Volume 146, Pages 308-328-- December 1, 2017 ...[Visit Journal] Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)] |
1. | High-Power (~9 μm) Quantum Cascade Lasers S. Slivken, Z. Huang, A. Evans, and M. Razeghi Applied Physics Letters 80 (22)-- June 3, 2002 ...[Visit Journal] High-power quantum cascade lasers emitting at λ > 9 μm are demonstrated. Accurate control of layer thickness and interfaces is evidenced by x-ray diffraction. Excellent peak power for uncoated lasers, up to 3.5 W per facet for a 25 μm emitter width, is obtained at 300 K for 75 period structures. The threshold current density at 300 K is only 1.4 kA/cm². From 300 to 425 K, the laser exhibits a characteristic temperature, T0, of 167 K. Over 150 mW of average power is measured per facet for a duty cycle of 6%. Simulation of the average power output reveals a thermal resistance of 12 K/W for epilayer-up mounted ridges. [reprint (PDF)] |
1. | Material and design engineering of (Al)GaN for high-performance avalanche photodiodes and intersubband applications M. Razeghi and C. Bayram SPIE Proceedings, Dresden, Germany (May 4-6, 2009), Vol. 7366, p. 73661F-1-- May 20, 2009 ...[Visit Journal] Numerous applications in scientific, medical, and military areas demand robust, compact, sensitive, and fast ultraviolet (UV) detection. Our (Al)GaN photodiodes pose high avalanche gain and single-photon detection efficiency that can measure up to these requirements. Inherit advantage of back-illumination in our devices offers an easier integration and layout packaging via flip-chip hybridization for UV focal plane arrays that may find uses from space applications to hostile-agent detection. Thanks to the recent (Al)GaN material optimization, III-Nitrides, known to have fast carrier dynamics and short relaxation times, are employed in (Al)GaN based superlattices that absorb in near-infrared regime. In this work, we explain the origins of our high performance UV APDs, and employ our (Al)GaN material knowledge for intersubband applications. We also discuss the extension of this material engineering into the far infrared, and even the terahertz (THz) region. [reprint (PDF)] |
1. | Tl incorporation in InSb and lattice contraction of In1-xTlxSb J.J. Lee and M. Razeghi Applied Physics Letters 76 (3)-- January 17, 2000 ...[Visit Journal] Ternary In1−xTlxSb thin films are grown by low pressure metalorganic chemical vapor deposition in the high In composition region. Infrared photoresponse spectra of the In1−xTlxSb epilayers show a clear shift toward a longer wavelength compared to that of InSb. Tl incorporation is confirmed by Auger electron spectroscopy. In contrast to the theoretical expectation, high resolution x-ray diffraction study reveals that the lattice of the In1−xTlxSb epilayers is contracted by the incorporation of Tl. As more Tl is incorporated, the lattice contraction is observed to increase gradually in the experimental range. A possible origin of this phenomenon is discussed. Our experimental results suggest that the Tl incorporation behavior in In1−xTlxSb differs from that of other group III impurities in III antimonides. [reprint (PDF)] |
1. | Optoelectronic Devices Based on III-V Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 Years M. Razeghi IEEE Journal of Selected Topics in Quantum Electronics 6 (6), pp.1344 - 1354 -- November 1, 2000 ...[Visit Journal] This paper reviews some of our pioneering contributions to the field of III–V compound semiconductor materials and low-dimensional optoelectronic devices. These contributions
span from the ultraviolet (200 nm) up to the far-infrared (25 μm) portion of the electromagnetic spectrum and have had a major scientific and technological impact on the semiconductor world in the past 20 years. [reprint (PDF)] |
1. | Neutron Activation Analysis of an Iranian Cigarette and its Smoke Z. Abedinzadeh, M. Razeghi and B. Parsa Z. Abedinzadeh, M. Razeghi and B. Parsa, Journal of Radioanalytical Chemistry, VoL 35 [1977) 373-376-- September 1, 1977 ...[Visit Journal] Non-destructive neutron activation analysis, employing a high-resolution Ge(Li) detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. [reprint (PDF)] |
1. | Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal] A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)] |
1. | Solar blind GaN p-i-n photodiodes D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi Applied Physics Letters 72 (25)-- June 22, 1998 ...[Visit Journal] We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011 Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. [reprint (PDF)] |
1. | Electrical Characterization of AlxGa1-xN for UV Photodetector Applications A. Saxler, M. Ahoujja, W.C. Mitchel, P. Kung, D. Walker, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] Ultraviolet photodetectors have many military and commercial applications. However, for many of these applications, the photodetectors must be solar blind. This means that the photodetectors must have a cutoff wavelength of less than about 270 nm. Semiconductor based devices would then need energy gaps of over 4.6 eV. In the AlxGa1-xN system, the aluminum mole fraction, x, required is over 40%. As the energy gap is increased, doping becomes much more difficult, especially p-type doping. This report is a study of the electrical properties of AlxGa1-xN to enable better control of the doping. Magnesium doped p-type AlxGa1-xN has been studied using high-temperature Hall effect measurements. The acceptor ionization energy has been found to increase substantially with the aluminum content. Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were also grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short- period superlattice structures instead of bulk-like AlGaN:Mg. Silicon doped n-type films have also been studied. [reprint (PDF)] |
1. | High Carrier Lifetime InSb Grown on GaAs Substrates E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal] We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)] |
1. | High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature H. Lim, S. Tsao, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007 ...[Visit Journal] The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. [reprint (PDF)] |
1. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
1. | Tunability of intersubband absorption from 4.5 to 5.3 µm in a GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition N. Péré-Laperne, C. Bayram, L. Nguyen-Thê, R. McClintock, and M. Razeghi Applied Physics Letters, Vol. 95, No. 13, p. 131109-- September 28, 2009 ...[Visit Journal] Intersubband (ISB) absorption at wavelengths as long as 5.3 µm is realized in GaN/Al0.2Ga0.8N superlattices grown by metalorganic chemical vapor deposition. By employing low aluminum content Al0.2Ga0.8N barriers and varying the well width from 2.6 to 5.1 nm, ISB absorption has been tuned from 4.5 to 5.3 µm. Theoretical ISB absorption and interband emission models are developed and compared to the experimental results. The effects of band offsets and the piezoelectric fields on these superlattices are investigated. [reprint (PDF)] |
1. | High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers S. Slivken, A. Evans, J. David, and M. Razeghi Virtual Journal of Nanoscience & Technology 9-- December 9, 2002 ...[Visit Journal][reprint (PDF)] |
1. | Internal Stress Around Micropipes in 6H-SiC Substrates H. Ohsato, T. Kato, T. Okuda and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] 6H-SiC single crystals are expected to be suitable substrates for thin film growth of the wide bandgap semiconductor (GaN, because it has a small lattice mismatch with GaN. Moreover, SiC single crystals are also expected for high-power and high- temperature electric applications because of its wide band gap, high breakdown voltage, high thermal conductivity and high temperature stability. Single crystals with large size used for electronic devices can be grown on seed crystals only by the modified Lely method based on sublimation deposition. But, single crystals have serious defects so called micropipes. These micropipes penetrate almost along the [001] direction. The internal strain around micropipes was investigated using the polarizing optical microscope for the purpose of clarifying the formation mechanisms and decreasing the amount of micropipes. A special interference figure was found around a micropipe under the crossed polars on the polarizing microscope. In this work, the special interference figure around micropipes due to internal stress was explained, and the magnitude and distribution of the stress was measured by means of photoelasticity and the mapping of Raman spectra. [reprint (PDF)] |
Page 21 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (673 Items)
|