| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 3 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (487 Items)
| 3. | Solar-blind photodetectors based on Ga2O3 and III-nitrides Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020 ...[Visit Journal] Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. [reprint (PDF)] |
| 3. | InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi Applied Physics Letters 74 (23)-- June 7, 1999 ...[Visit Journal] We report high power mid-infrared electrical injection operation of laser diodes based on InAsSb/InAsP strained-layer superlattices grown on InAs substrate by metal-organic chemical vapor deposition. The broad-area laser diodes with 100 μm aperture and 1800 μm cavity length demonstrate peak output powers of 546 and 94 mW in pulsed and cw operation respectively at 100 K with a threshold current density as low as 100 A/cm². [reprint (PDF)] |
| 3. | High Power, Room Temperature, Continuous-Wave Operation of Quantum Cascade Lasers Grown by GasMBE A. Evans, J. David, L. Doris, J.S. Yu, S. Slivken and M. Razeghi SPIE Conference, Jose, CA, Vol. 5359, pp. 188-- January 25, 2004 ...[Visit Journal] Very high power continuous-wave quantum cascade lasers are demonstrated in the mid-infrared (3 - 6 µm) wavelength range. λ~6 µm high-reflectivity coated QCLs are demonstrated producing over 370 mW continuous-wave power at room temperature with continuous-wave operation up to 333 K. Advanced heterostructure geometries, including the use of a thick electroplated gold, epilayer-side heat sink and a buried-ridge heterostructure are demonstrated to improve laser performance significantly when combined with narrow laser ridges. Recent significant improvements in CW operation are presented and include the development if narrow (9 µm-wide) ridges for high temperature CW operation. GasMBE growth of the strain-balanced λ~6 µm QCL heterostructure is discussed. X-ray diffraction measurements are presented and compared to computer simulations that indicate excellent layer and compositional uniformity of the structure. [reprint (PDF)] |
| 3. | Thin-Film Antimonide-Based Photodetectors Integrated on Si Yiyun Zhang , Member, IEEE, Abbas Haddadi, Member, IEEE, Romain Chevallier, Arash Dehzangi, Member, IEEE, and Manijeh Razeghi , Life Fellow, IEEE IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 2-- April 1, 2018 ...[Visit Journal] Monolithic integration of antimonide (Sb)-based
compound semiconductors on Si is in high demand to enrich silicon photonics by extending the detection range to longer infrared wavelengths. In this paper, we have demonstrated the damage-free transfer of large-area (1×1 cm² ) narrow-bandgap Sb-based type-II superlattice (T2SL)-based thin-film materials onto a Si substrate using a combination of wafer-bonding and chemical epilayer release techniques. An array of Sb-based T2SL-based long-wavelength infrared (LWIR) photodetectors with diameters from 100 to 400 μm has been successfully fabricated using standard "top–down" processing technique. The transferred LWIR photodetectors exhibit a cut-off wavelength of λ 8.6 μm at 77 K. The dark current density of the transferred photodetectors under 200 mV applied bias at 77 K is as low as
5.7×10−4 A/cm² and the R×A reaches 66.3 Ω·cm², exhibiting no electrical degradation compared with reference samples on GaSb native substrate. The quantum efficiency and peak responsivity at 6.75 μm (@77 K, 200 mV) are 46.2% and 2.44 A/W, respectively. The specific detectivity (D*) at 6.75 μm reaches as
high as 1.6×1011 cm·Hz1/2/W under 200 mV bias at 77 K. Our method opens a reliable pathway to realize high performance
and practical Sb-based optoelectronic devices on a Si platform.
[reprint (PDF)] |
| 3. | Very High Average Power Quantum Cascade Lasers by GasMBE S. Slivken and M. Razeghi SPIE Conference, San Jose, CA, Vol. 4999, pp. 59-- January 27, 2003 ...[Visit Journal] Very high average power QCLs are demonstrated within the 5.8 - 9 µm wavelength range. At longer wavelengths, scaling of the power is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 3.5 W of peak power per facet has been demonstrated at room temperature for a single 25 µm by 3 mm diode, with an average power of 150 mW at 6% duty cycle. At shorter wavelengths, highly strain-balanced heterostructures are used to create a high coduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we demonstrate 225 mW of average power from a single facet at room temperature. Increasing the conduction band offset further and optimizing the doping in the injector region has led to demonstration of > 250 mW average power (λ = 5.8 µm) at > 50% duty cycle for a 20 µm by 2 mm HR coated diode bonded epilayer-down to a copper heatsink. Also at room temperature, use of Au electroplating and wider ridges has allowed us to further demonstrate without epilayer-down bonding, 0.67 W average power at 17% duty cycle from a single 40 µm by 2 mm HR coated laser. [reprint (PDF)] |
| 3. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
| 3. | High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices Jiakai Li; Arash Dehzangi; Donghai Wu; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128813-- January 31, 2020 ...[Visit Journal] A two terminal short wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb on GaSb substrate are designed fabricated and presented. With the base thickness of 40 nm, the device exhibited 100% cut-off wavelengths of ~2.3 μm at 300K. The saturated peak responsivity value is of 325.5 A/W at 300K, under front-side illumination without any anti-reflection coating. A saturated optical gain at 300K was 215 a saturated dark current shot noise limited specific detectivity of 4.9×1011 cm·Hz½/W at 300 K was measured. Similar heterojunction phototransistor structure was grown and fabricated with different method of processing for high speed testing. For 80 μm diameter
circular diode size under 20 V applied reverse bias, a −3 dB cut-off frequency of 1.0 GHz was achieved, which showed the potential of type-II superlattice based heterojunction phototransistors to be used for high speed detection. [reprint (PDF)] |
| 3. | Growth and Optimization of GaInAsP/InP Material System for Quantum Well Infrared Photodetector Applications M. Erdtmann, J. Jiang, A. Matlis, A. Tahraoui, C. Jelen, M. Razeghi, and G. Brown SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Multi-quantum well structures of GaxIn1-xAsyP1-y were grown by metalorganic chemical vapor deposition for the fabrication of quantum well IR photodetectors. The thickness and composition of the wells was determined by high-resolution x-ray diffraction and photoluminescence experiments. The intersubband absorption spectrum of the Ga0.47In0.53As/InP, Ga0.38In0.62As0.80P0.20 (1.55 μm)/InP, and Ga0.27In0.73As0.57P0.43 (1.3 μm))/InP quantum wells are found to have cutoff wavelengths of 9.3 μm, 10.7 micrometers , and 14.2 μm respectively. These wavelengths are consistent with a conduction band offset to bandgap ratio of approximately 0.32. Facet coupled illumination responsivity and detectivity are reported for each composition. [reprint (PDF)] |
| 3. | Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model H.K. Lee, K.S. Chung, J.S. Yu and M. Razeghi Physica Status Solidi (a), Vol. 206, p. 356-362-- February 1, 2009 ...[Visit Journal] We have theoretically investigated and compared the thermal characteristics of 10.6 μm InGaAs/InAlAs/InP buried heterostructure (BH) quantum cascade lasers (QCLs) with different heat-sinking configurations by a steady-state heat-transfer analysis. The heat-source densities were obtained from laser threshold power densities measured experimentally under room-temperature continuous-wave mode. The two-dimensional anisotropic heat-dissipation model was used to calculate the temperature distribution, heat flux, and thermal conductance (Gth) inside the device. For good thermal characteristics, the QCLs in the long-wavelength infrared region require the relatively narrow BH structure in combination with epilayer-down bonding due to thick active core/cladding layers and high insulator losses. The single-ridge BH structure results in slightly higher thermal conductance by 2-4% than the double-channel (DC) ridge BH structure. For W = 12 m with 5 μm thick electroplated Au, the single-ridge BH laser with epilayer-down bonding exhibited the highest Gth value of 201.9 W/K cm2, i.e. increased by nearly 36% with respect to the epilayer-up bonded DC ridge waveguide laser. This value is improved by 50% and 62% with respect to the single-ridge BH laser and DC ridge waveguide laser with W = 20 μm in the epilayer-up bonding scheme, respectively. [reprint (PDF)] |
| 3. | Very High Average Power at Room Temperature from λ ~ 5.9 μm Quantum Cascade Lasers J.S. Yu, S. Slivken, A. Evans, J. David and M. Razeghi Virtual Journal of Nanoscale Science & Technology 26-- May 26, 2003 ...[Visit Journal][reprint (PDF)] |
| 3. | Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021) ...[Visit Journal] We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. [reprint (PDF)] |
| 3. | High speed type-II superlattice based photodetectors transferred on sapphire Arash Dehzangi, Ryan McClintock, Donghai Wu, Jiakai Li, Stephen Johnson, Emily Dial and Manijeh Razeghi Applied Physics Express, Volume 12, Number 11-- October 3, 2019 ...[Visit Journal] We report the substrate transfer of InAs/GaSb/AlSb based type-II superlattice (T2SL) e-SWIR photodetector from native GaSb substrates to low loss sapphire substrate in order to enhance the frequency response of the device. We have demonstrated the damage-free transfer of T2SL-based thin-films to sapphire substrate using top–down processing and a chemical epilayer release technique. After transfer the −3 dB cut-off frequency increased from 6.4 GHz to 17.2 GHz, for 8 μm diameter circular mesas under -15 V applied bias. We also investigated the cut-off frequency verses applied bias and lateral scaling to assess the limitations for even higher frequency performance. Direct Link [reprint (PDF)] |
| 3. | Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal] New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)] |
| 3. | High-Power (~9 μm) Quantum Cascade Lasers S. Slivken, Z. Huang, A. Evans, and M. Razeghi Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)] |
| 3. | Very high wall plug efficiency of quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 76080F-1-- January 22, 2010 ...[Visit Journal] We demonstrate very high wall plug efficiency (WPE) of mid-infrared quantum cascade lasers (QCLs) in low temperature pulsed mode operation (53%), room temperature pulsed mode operation (23%), and room temperature continuous wave operation (18%). All of these values are the highest to date for any QCLs. The optimization of WPE takes the route of understanding the limiting factors of each sub-efficiency, exploring new designs to overcome the limiting factor, and constantly improving the material quality. [reprint (PDF)] |
| 3. | High power broad area quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal] Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)] |
| 3. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
| 3. | Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors Ryan McClintock ; Manijeh Razeghi Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015 ...[Visit Journal] AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress.
In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. [reprint (PDF)] |
| 3. | Growth of In1-xTlxSb, a New Infrared Material, by Low-Pressure Metalorganic Chemical Vapor Deposition Y.H. Choi, R. Sudharsanan, C, Besikci, and M. Razeghi Applied Physics Letters 63 (3)-- July 19, 1993 ...[Visit Journal] We report the growth of In1-xTlxSb, a new III-V alloy for long-wavelength infrared detector applications, by low-pressure metalorganic chemical vapor deposition. In1-xTlxSb with good surface morphology was obtained on both GaAs and InSb substrates at a growth temperature of 455 °C. X-ray diffraction measurements showed resolved peaks of In1-xTlxSb and InSb films. Infrared absorption spectrum of In1-xTlxSb showed a shift toward lower energies compared to InSb spectrum. Hall mobility data on In1-xTlxSb/InSb/GaAs structure showed enhanced mobility at low temperatures compared to InSb/GaAs structure. [reprint (PDF)] |
| 3. | Internal Stress Around Micropipes in 6H-SiC Substrates H. Ohsato, T. Kato, T. Okuda and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] 6H-SiC single crystals are expected to be suitable substrates for thin film growth of the wide bandgap semiconductor (GaN, because it has a small lattice mismatch with GaN. Moreover, SiC single crystals are also expected for high-power and high- temperature electric applications because of its wide band gap, high breakdown voltage, high thermal conductivity and high temperature stability. Single crystals with large size used for electronic devices can be grown on seed crystals only by the modified Lely method based on sublimation deposition. But, single crystals have serious defects so called micropipes. These micropipes penetrate almost along the [001] direction. The internal strain around micropipes was investigated using the polarizing optical microscope for the purpose of clarifying the formation mechanisms and decreasing the amount of micropipes. A special interference figure was found around a micropipe under the crossed polars on the polarizing microscope. In this work, the special interference figure around micropipes due to internal stress was explained, and the magnitude and distribution of the stress was measured by means of photoelasticity and the mapping of Raman spectra. [reprint (PDF)] |
| 3. | Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi Optics Letters Vol. 40, Iss. 1, pp. 29–32-- December 18, 2014 ...[Visit Journal] An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and −50 mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10−5 A/cm², with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×1012 Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10−9 A/cm², and specific detectivity of 1.5×1014 Jones. From 81 to 100 K, the FPA showed ∼11 mK NEDT by using F/2.3 optics and a 9.69 ms integration time. [reprint (PDF)] |
| 3. | Ultraviolet Detectors for AstroPhysics Present and Future M. Ulmer, M. Razeghi, and E. Bigan Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 239-- February 6, 1995 ...[Visit Journal] Astronomical instruments for the study of UV astronomy have been developed for NASA missions such as the Hubble Space Telescope. The systems that are `blind to the visible' (`solar-blind') yet sensitive to the UV that have been flown in satellites have detective efficiencies of about 10 to 20%, although typically electron bombardment charge coupled devices are higher at 30 - 40% and ordinary CCDs achieve 1 - 5%. Therefore, there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors. We provide a brief review of some aspects of UV astronomy, UV detector development, and possible technologies for the future. We suggest that a particularly promising future technology is one based on the ability of investigators to produce high quality films made of wide bandgap III-V semiconductors. [reprint (PDF)] |
| 3. | Demonstration of 256x256 Focal Plane Arrays Based on Al-free GaInAs/InP QWIP J. Jiang, K. Mi, R. McClintock, M. Razeghi, G.J. Brown, and C. Jelen IEEE Photonics Technology Letters 15 (9)-- September 1, 2003 ...[Visit Journal] We report the first demonstration of an infrared focal plane array based on aluminum-free GaInAs-InP quantum-well infrared photodetectors (QWIPs).A unique positive lithography method was developed to perform indium-bump liftoff. The noise equivalent differential temperature (NEΔT) of 29 mK was achieved at 70 K with f/2 optics. [reprint (PDF)] |
| 3. | EPR Study of Gd around the Ferroelastic Transition Point of Pb3 (PO4)2 M. RAZEGHI and B. HOULIER M. RAZEGHI et al., phys. stat. sol. (b) 89, K135 (1978) -- October 1, 1978 ...[Visit Journal][reprint (PDF)] |
| 3. | Characterization of high quality GaInP/GaAs superlattices grown on GaAs and Si substrates by gas source molecular beam epitaxy C. Jelen, S. Slivken, X.G. He, and M. Razeghi and S. Shastry Journal of Vacuum Science and Technology B 12 (2)-- March 1, 1994 ...[Visit Journal] We report an analysis of the heteroepitaxial interfaces in high quality GaInP–GaAs superlattices grown simultaneously on GaAs and Si substrates by gas source molecular beam epitaxy. These two superlattices have been studied using high resolution x-ray diffraction measurements. Sharp superlattice satellites, with very little broadening, are observed within a 6° range for the sample on GaAs. Photoluminescence peaks with full widths at half-maximums of 5 and 7 meV are obtained at 4 K for samples with 58 Å wells on GaAs and Si, respectively. Room temperature exciton absorption is observed in the photovoltage measurements for a superlattice grown on Si substrate. The thicknesses determined by x-ray analysis are consistent with those obtained by a Kronig–Penny model fitting of the photovoltage spectroscopy. [reprint (PDF)] |
Page 3 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (487 Items)
|