| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 3 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (492 Items)
| 4. | EPR investigation of Gd3+ and Eu2+ in the α- and β-phases of lead phosphate M. RAZEGHI, J. P. BUISSON, and B. HOULIE M. RAZEGHI et al.: EPR Investigation of Gd3+ and Eu2+ in Lead Phosphate phys. stat. sol. (b) 96, 283 (1979-- September 1, 1979 ...[Visit Journal] The X-band EPR spectra of Gd3+and Eu2+diluted in Pb3(P04)2crystals are studied. Lead phos-phate exhibits a ferroelastic phase transition a t 180 “C and the EPR spectra obtained in eachphase differ from each other. The spectra are very complex because the zero field splitting hasthe same order of magnitude as the Zeeman term. The spin Hamiltonian parameters and theenergy levels are computed. “Forbidden” or “missing” transitions and line intensities can beexplained. [reprint (PDF)] |
| 4. | Neutron Activation Analysis of an Iranian Cigarette and its Smoke Z. Abedinzadeh, M. Razeghi and B. Parsa Z. Abedinzadeh, M. Razeghi and B. Parsa, Journal of Radioanalytical Chemistry, VoL 35 [1977) 373-376-- September 1, 1977 ...[Visit Journal] Non-destructive neutron activation analysis, employing a high-resolution Ge(Li) detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. [reprint (PDF)] |
| 4. | Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi Applied Physics Letters 109, 021107-- July 12, 2016 ...[Visit Journal] A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. [reprint (PDF)] |
| 4. | Room temperature continuous wave operation of quantum cascade lasers with 12.5% wall plug efficiency Y. Bai, S. Slivken, S.R. Darvish, and M. Razeghi Applied Physics Letters, Vol. 93, No. 2, p. 021103-1-- July 14, 2008 ...[Visit Journal] An InP based quantum cascade laser heterostructure emitting at 4.6 µm was grown with gas-source molecular beam epitaxy. The wafer was processed into a conventional double-channel ridge waveguide geometry with ridge widths of 19.7 and 10.6 µm without semi-insulating InP regrowth. An uncoated, narrow ridge device with a 4.8 mm cavity length was epilayer down bonded to a diamond submount and exhibits 2.5 W maximum output power with a wall plug efficiency of 12.5% at room temperature in continuous wave operation. [reprint (PDF)] |
| 4. | Semiconductor ultraviolet detectors M. Razeghi and A. Rogalski SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal] This paper presents an overview of semiconductor ultraviolet (UV) detectors that are currently available and associated technologies that are undergoing further development. At the beginning, the classification of UV detectors and general requirements imposed on these detectors are presented. Further consideration are restricted to modern semiconductor UV detectors, so the current state-of-the-art of different types of semiconductor UV detectors is presented. Hitherto, the semiconductor UV detectors have been mainly fabricated using Si. Industries such as the aerospace, automotive, petroleum, and others have continuously provided the impetus pushing the development of fringe technologies which are tolerant of increasingly high temperatures and hostile environments. As a result, the main effort are currently directed to a new generation of UV detectors fabricated from wide-band-gap semiconductors between them the most promising are diamond and AlGaN. The latest progress in development of AlGaN UV detectors is finally described in detail. [reprint (PDF)] |
| 3. | Study on the effects of minority carrier leakage in InAsSb/InPAsSb double heterostructure B. Lane, D. Wu, H.J. Yi, J. Diaz, A. Rybaltowski, S. Kim, M. Erdtmann, H. Jeon and M. Razeghi Applied Physics Letters 70 (11)-- April 17, 1997 ...[Visit Journal] InAsxSb1−x/InP1−x−yAsxSby double heterostructures have been grown on InAs substrates by metal-organic chemical vapor deposition. The minority carrier leakage to the cladding layers was studied with photoluminescence measurements on the InAsSb/InPAsSb double heterostructures. A carrier leakage model is used to extract parameters related to the leakage current (diffusion-coefficient and length) from experimental results. Using the obtained parameters, the temperature dependence of the threshold current density of InAsSb/InPAsSb double heterostructure lasers is predicted and compared with experimental results. [reprint (PDF)] |
| 3. | Back-illuminated solar-blind photodetectors for imaging applications R. McClintock, A. Yasan, K. Mayes, P. Kung, and M. Razeghi SPIE Conference, Jose, CA, Vol. 5732, pp.175-- January 22, 2005 ...[Visit Journal] Back-illuminated solar-blind ultraviolet p-i-n photodetectors and focal plane arrays are investigated. We initially study single-pixel devices and then discuss the hybridization to a read-out integrated circuit to form focal plane arrays for solar-blind UV imaging. [reprint (PDF)] |
| 3. | Electrical Transport Properties of Highly Doped N-type GaN Epilayers H.J. Lee, M.G. Cheong, E.K. Suh, and M. Razeghi SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal] Temperature-dependent Hall-effects in MOCVD-grown Si-doped GaN epilayers were measured as a function of temperature in the range 10-800 K. The results were satisfactorily analyzed in terms of a two-band model including the (Gamma) and impurity bands at lower temperatures than room. The (Gamma) band electrons are dominant only high temperatures. The ionized impurity scattering is the most important in the (Gamma) band except at very high temperatures. [reprint (PDF)] |
| 3. | Substrate emission quantum cascade ring lasers with room temperature continuous wave operation Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, and M. Razeghi SPIE Proceedings, Vol. 8268, p. 82680N-- January 22, 2012 ...[Visit Journal] We demonstrate room temperature, continuous wave operation of quantum cascade ring lasers around 5 μm with single mode operation up to 0.51 W output power. Single mode operation persists up to 0.4 W. Light is coupled out of the ring cavity through the substrate with a second order distributed feedback grating. The substrate emission scheme allows for
epilayer-down bonding, which leads to room temperature continuous wave operation. The far field analysis indicates that the device operates in a high order mode. [reprint (PDF)] |
| 3. | Quantum Dot Intersubband Photodetectors C. Jelen, M. Erdtmann, S. Kim, and M. Razeghi SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal] Quantum dots are recognized as very promising candidates for the fabrication of intersubband photodetectors in the infrared spectral range. At present, material quality is making rapid progress and some devices have been demonstrated. Examples of mid-infrared quantum dot intersubband photodetectors are presented along with device design and data analysis. Nonetheless, the performance of these devices remains less than comparable quantum well intersubband photodetectors due to difficulties in controlling the quantum dot size and distribution during epitaxy. [reprint (PDF)] |
| 3. | Room temperature quantum cascade lasers with 27% wall plug efficiency Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011 ...[Visit Journal] Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. [reprint (PDF)] |
| 3. | Room temperature operation of 8-12 μm InSbBi infrared photodetectors on GaAs substrates J.J. Lee, J.D. Kim, and M. Razeghi Applied Physics Letters 73 (5)-- August 3, 1998 ...[Visit Journal] We report the room temperature operation of 8–12 μm InSbBi long-wavelength infrared photodetectors. The InSbBi/InSb heterostructures were grown on semi-insulating GaAs (001) substrates by low pressure metalorganic chemical vapor deposition. The voltage responsivity at 10.6 μm was about 1.9 mV/W at room temperature and the corresponding Johnson noise limited detectivity was estimated to be about 1.2×106 cm·Hz½/W. The carrier lifetime derived from the voltage dependent responsivity measurements was about 0.7 ns. [reprint (PDF)] |
| 3. | Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal] We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)] |
| 3. | Solar-blind photodetectors based on Ga2O3 and III-nitrides Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020 ...[Visit Journal] Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. [reprint (PDF)] |
| 3. | Multi-color 4–20 μm In-P-based Quantum Well Infrared Photodetectors C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal] In order to tune the wavelength of lattice-matched QWIP detectors over the range from 4 - 20 &mum, new designs are demonstrated for the first time which combine InGaAlAs and InGaAsP layers lattice-matched to InP and grown by gas-source molecular beam epitaxy. We demonstrate the first long-wavelength quantum well infrared photodetectors using the lattice-matched n-doped InGaAlAs/InP materials system. Samples with AlAs mole fractions of 0.0, 0.1, and 0.15 result in cutoff wavelengths of 8.5, 13.3, and 19.4 μm, respectively. A 45 degree facet coupled illumination responsivity of R equals 0.37 A/W and detectivity of D*(λ) equals 1x109 cm·Hz½·W-1 at T = 77 K, for a cutoff wavelength λc equals 13.3 μm have been achieved. Based on the measured intersubband photoresponse wavelength, a null conduction band offset is expected for In0.52Ga0.21Al0.27As/InP heterojunctions. We also report quantum well infrared photodetector structures of In0.53Ga0.47As/Al0.48In0.52As grown on InP substrate with photoresponse at 4 μm suitable for mid-wavelength infrared detectors. These detectors exhibit a constant peak responsivity of 30 mA/W independent of temperature in the range from T equals 77 K to T equals 200 K. Combining these two materials, we report the first multispectral detectors that combine lattice-matched quantum wells of InGaAs/InAlAs and InGaAs/InP. Utilizing two contacts, a voltage tunable detector with (lambda) p equals 8 micrometer at a bias of V equals 5 V and λp equals 4 μm at V equals 10 V is demonstrated. [reprint (PDF)] |
| 3. | Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021) ...[Visit Journal] We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. [reprint (PDF)] |
| 3. | Thin-Film Antimonide-Based Photodetectors Integrated on Si Yiyun Zhang , Member, IEEE, Abbas Haddadi, Member, IEEE, Romain Chevallier, Arash Dehzangi, Member, IEEE, and Manijeh Razeghi , Life Fellow, IEEE IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 2-- April 1, 2018 ...[Visit Journal] Monolithic integration of antimonide (Sb)-based
compound semiconductors on Si is in high demand to enrich silicon photonics by extending the detection range to longer infrared wavelengths. In this paper, we have demonstrated the damage-free transfer of large-area (1×1 cm² ) narrow-bandgap Sb-based type-II superlattice (T2SL)-based thin-film materials onto a Si substrate using a combination of wafer-bonding and chemical epilayer release techniques. An array of Sb-based T2SL-based long-wavelength infrared (LWIR) photodetectors with diameters from 100 to 400 μm has been successfully fabricated using standard "top–down" processing technique. The transferred LWIR photodetectors exhibit a cut-off wavelength of λ 8.6 μm at 77 K. The dark current density of the transferred photodetectors under 200 mV applied bias at 77 K is as low as
5.7×10−4 A/cm² and the R×A reaches 66.3 Ω·cm², exhibiting no electrical degradation compared with reference samples on GaSb native substrate. The quantum efficiency and peak responsivity at 6.75 μm (@77 K, 200 mV) are 46.2% and 2.44 A/W, respectively. The specific detectivity (D*) at 6.75 μm reaches as
high as 1.6×1011 cm·Hz1/2/W under 200 mV bias at 77 K. Our method opens a reliable pathway to realize high performance
and practical Sb-based optoelectronic devices on a Si platform.
[reprint (PDF)] |
| 3. | Very High Average Power Quantum Cascade Lasers by GasMBE S. Slivken and M. Razeghi SPIE Conference, San Jose, CA, Vol. 4999, pp. 59-- January 27, 2003 ...[Visit Journal] Very high average power QCLs are demonstrated within the 5.8 - 9 µm wavelength range. At longer wavelengths, scaling of the power is demonstrated by increasing the number of emitting regions in the waveguide core. At λ = 9 µm, over 3.5 W of peak power per facet has been demonstrated at room temperature for a single 25 µm by 3 mm diode, with an average power of 150 mW at 6% duty cycle. At shorter wavelengths, highly strain-balanced heterostructures are used to create a high coduction band offset and minimize leakage current. At λ = 6 µm, utilizing a high reflective coating and epilayer-down mounting of the laser, we demonstrate 225 mW of average power from a single facet at room temperature. Increasing the conduction band offset further and optimizing the doping in the injector region has led to demonstration of > 250 mW average power (λ = 5.8 µm) at > 50% duty cycle for a 20 µm by 2 mm HR coated diode bonded epilayer-down to a copper heatsink. Also at room temperature, use of Au electroplating and wider ridges has allowed us to further demonstrate without epilayer-down bonding, 0.67 W average power at 17% duty cycle from a single 40 µm by 2 mm HR coated laser. [reprint (PDF)] |
| 3. | InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi Applied Physics Letters 74 (23)-- June 7, 1999 ...[Visit Journal] We report high power mid-infrared electrical injection operation of laser diodes based on InAsSb/InAsP strained-layer superlattices grown on InAs substrate by metal-organic chemical vapor deposition. The broad-area laser diodes with 100 μm aperture and 1800 μm cavity length demonstrate peak output powers of 546 and 94 mW in pulsed and cw operation respectively at 100 K with a threshold current density as low as 100 A/cm². [reprint (PDF)] |
| 3. | Room Temperature, Continuous Wave Quantum Cascade Laser Grown Directly on a Si Wafer Steven Slivken and Manijeh Razeghi S. Slivken and M. Razeghi,, Journal of Quantum Electronics, Vol. 59, No. 4, doi: 10.1109/JQE.2023.3282710 ...[Visit Journal] We report the room temperature demonstration of a high power, continuous wave, LWIR quantum cascade laser grown directly on a Si substrate. A new wafer, based on a high efficiency, strain-balanced laser core was processed into a lateral injection buried heterostructure laser geometry. A pulsed efficiency of 11.1% was demonstrated at room temperature, with
an emission wavelength of 8.35 μm. With low fidelity, epilayer-up packaging, CW emission up to 343 K was also demonstrated, with a maximum output power of >0.7 W near room temperature. [reprint (PDF)] |
| 3. | High power broad area quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal] Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)] |
| 3. | High-speed short wavelength infrared heterojunction phototransistors based on type II superlattices Jiakai Li; Arash Dehzangi; Donghai Wu; Manijeh Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128813-- January 31, 2020 ...[Visit Journal] A two terminal short wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb on GaSb substrate are designed fabricated and presented. With the base thickness of 40 nm, the device exhibited 100% cut-off wavelengths of ~2.3 μm at 300K. The saturated peak responsivity value is of 325.5 A/W at 300K, under front-side illumination without any anti-reflection coating. A saturated optical gain at 300K was 215 a saturated dark current shot noise limited specific detectivity of 4.9×1011 cm·Hz½/W at 300 K was measured. Similar heterojunction phototransistor structure was grown and fabricated with different method of processing for high speed testing. For 80 μm diameter
circular diode size under 20 V applied reverse bias, a −3 dB cut-off frequency of 1.0 GHz was achieved, which showed the potential of type-II superlattice based heterojunction phototransistors to be used for high speed detection. [reprint (PDF)] |
| 3. | Growth and Optimization of GaInAsP/InP Material System for Quantum Well Infrared Photodetector Applications M. Erdtmann, J. Jiang, A. Matlis, A. Tahraoui, C. Jelen, M. Razeghi, and G. Brown SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Multi-quantum well structures of GaxIn1-xAsyP1-y were grown by metalorganic chemical vapor deposition for the fabrication of quantum well IR photodetectors. The thickness and composition of the wells was determined by high-resolution x-ray diffraction and photoluminescence experiments. The intersubband absorption spectrum of the Ga0.47In0.53As/InP, Ga0.38In0.62As0.80P0.20 (1.55 μm)/InP, and Ga0.27In0.73As0.57P0.43 (1.3 μm))/InP quantum wells are found to have cutoff wavelengths of 9.3 μm, 10.7 micrometers , and 14.2 μm respectively. These wavelengths are consistent with a conduction band offset to bandgap ratio of approximately 0.32. Facet coupled illumination responsivity and detectivity are reported for each composition. [reprint (PDF)] |
| 3. | Thermal analysis of buried heterostructure quantum cascade lasers for long-wavelength infrared emission using 2D anisotropic heat-dissipation model H.K. Lee, K.S. Chung, J.S. Yu and M. Razeghi Physica Status Solidi (a), Vol. 206, p. 356-362-- February 1, 2009 ...[Visit Journal] We have theoretically investigated and compared the thermal characteristics of 10.6 μm InGaAs/InAlAs/InP buried heterostructure (BH) quantum cascade lasers (QCLs) with different heat-sinking configurations by a steady-state heat-transfer analysis. The heat-source densities were obtained from laser threshold power densities measured experimentally under room-temperature continuous-wave mode. The two-dimensional anisotropic heat-dissipation model was used to calculate the temperature distribution, heat flux, and thermal conductance (Gth) inside the device. For good thermal characteristics, the QCLs in the long-wavelength infrared region require the relatively narrow BH structure in combination with epilayer-down bonding due to thick active core/cladding layers and high insulator losses. The single-ridge BH structure results in slightly higher thermal conductance by 2-4% than the double-channel (DC) ridge BH structure. For W = 12 m with 5 μm thick electroplated Au, the single-ridge BH laser with epilayer-down bonding exhibited the highest Gth value of 201.9 W/K cm2, i.e. increased by nearly 36% with respect to the epilayer-up bonded DC ridge waveguide laser. This value is improved by 50% and 62% with respect to the single-ridge BH laser and DC ridge waveguide laser with W = 20 μm in the epilayer-up bonding scheme, respectively. [reprint (PDF)] |
| 3. | AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition C. Bayram, Z. Vashaei and M. Razeghi Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal] AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)] |
Page 3 of 20: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 >> Next (492 Items)
|