Page 3 of 27:  Prev << 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

4.  Solar-blind photodetectors based on Ga2O3 and III-nitrides
Ryan McClintock; Alexandre Jaud; Lakshay Gautam; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128803-- January 31, 2020 ...[Visit Journal]
Recently, there has been a surge of interest in the wide bandgap semiconductors for solar blind photo detectors (SBPD). This work presents our recent progress in the growth/doping of AlGaN and Ga2O3 thin films for solar blind detection applications. Both of these thin films grown are grown by metal organic chemical vapor deposition (MOCVD) in the same Aixtron MOCVD system. Solar-blind metal-semiconductor-metal photodetectors were fabricated with Ga2O3. Spectral responsivity studies of the MSM photodetectors revealed a peak at 261 nm and a maximum EQE of 41.7% for a −2.5 V bias. We have also demonstrated AlGaN based solar-blind avalanche photodiodes with a gain in excess of 57,000 at ~100 volts of reverse bias. This gain can be attributed to avalanche multiplication of the photogenerated carriers within the device. Both of these devices show the potential of wide bandgap semiconductors for solar blind photo detectors. [reprint (PDF)]
 
4.  Room temperature terahertz semiconductor frequency comb
Quanyong Lu, Feihu Wang, Donghai Wu, Steven Slivken & Manijeh Razeghi
Nature Communications 10, 2403-- June 3, 2019 ...[Visit Journal]
A terahertz (THz) frequency comb capable of high-resolution measurement will significantly advance THz technology application in spectroscopy, metrology and sensing. The recently developed cryogenic-cooled THz quantum cascade laser (QCL) comb has exhibited great potentials with high power and broadband spectrum. Here, we report a room temperature THz harmonic frequency comb in 2.2 to 3.3 THz based on difference-frequency generation from a mid-IR QCL. The THz comb is intracavity generated via down-converting a mid-IR comb with an integrated mid-IR single mode based on distributed-feedback grating without using external optical elements. The grating Bragg wavelength is largely detuned from the gain peak to suppress the grating dispersion and support the comb operation in the high gain spectral range. Multiheterodyne spectroscopy with multiple equally spaced lines by beating it with a reference Fabry-Pérot comb confirms the THz comb operation. This type of THz comb will find applications to room temperature chip-based THz spectroscopy. [reprint (PDF)]
 
4.  High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs
Steven Slivken and Manijeh Razeghi
Photonics 2022, 9(4), 231 (COVER ARTICLE) ...[Visit Journal]
The motivation behind this work is to show that InP-based intersubband lasers with high power can be realized on substrates with significant lattice mismatch. This is a primary concern for the integration of mid-infrared active optoelectronic devices on low-cost photonic platforms, such as Si. As evidence, an InP-based mid-infrared quantum cascade laser structure was grown on a GaAs substrate, which has a large (4%) lattice mismatch with respect to InP. Prior to laser core growth, a metamorphic buffer layer of InP was grown directly on a GaAs substrate to adjust the lattice constant. Wafer characterization data are given to establish general material characteristics. A simple fabrication procedure leads to lasers with high peak power (>14 W) at room temperature. These results are extremely promising for direct quantum cascade laser growth on Si substrates. [reprint (PDF)]
 
4.  Microstrip Array Ring FETs with 2D p-Ga2O3 Channels Grown by MOCVD
Manijeh Razeghi, Junhee Lee, Lakshay Gautam, Jean-Pierre Leburton, Ferechteh H. Teherani, Pedram Khalili Amiri, Vinayak P. Dravid and Dimitris Pavlidis
Photonics 2021, 8(12), 578; ...[Visit Journal]
Gallium oxide (Ga2O3) thin films of various thicknesses were grown on sapphire (0001) substrates by metal organic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa), high purity deionized water, and silane (SiH4) as gallium, oxygen, and silicon precursors, respectively. N2 was used as carrier gas. Hall measurements revealed that films grown with a lower VI/III ratio had a dominant p-type conduction with room temperature mobilities up to 7 cm2/Vs and carrier concentrations up to ~1020 cm−3 for thinner layers. High resolution transmission electron microscopy suggested that the layers were mainly κ phase. Microstrip field-effect transistors (FETs) were fabricated using 2D p-type Ga2O3:Si, channels. They achieved a maximum drain current of 2.19 mA and an on/off ratio as high as ~108. A phenomenological model for the p-type conduction was also presented. As the first demonstration of a p-type Ga2O3, this work represents a significant advance which is state of the art, which would allow the fabrication of p-n junction based devices which could be smaller/thinner and bring both cost (more devices/wafer and less growth time) and operating speed (due to miniaturization) advantages. Moreover, the first scaling down to 2D device channels opens the prospect of faster devices and improved heat evacuation [reprint (PDF)]
 
4.  High speed type-II superlattice based photodetectors transferred on sapphire
Arash Dehzangi, Ryan McClintock, Donghai Wu, Jiakai Li, Stephen Johnson, Emily Dial and Manijeh Razeghi
Applied Physics Express, Volume 12, Number 11-- October 3, 2019 ...[Visit Journal]
We report the substrate transfer of InAs/GaSb/AlSb based type-II superlattice (T2SL) e-SWIR photodetector from native GaSb substrates to low loss sapphire substrate in order to enhance the frequency response of the device. We have demonstrated the damage-free transfer of T2SL-based thin-films to sapphire substrate using top–down processing and a chemical epilayer release technique. After transfer the −3 dB cut-off frequency increased from 6.4 GHz to 17.2 GHz, for 8 μm diameter circular mesas under -15 V applied bias. We also investigated the cut-off frequency verses applied bias and lateral scaling to assess the limitations for even higher frequency performance. Direct Link [reprint (PDF)]
 
4.  Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers
Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang
Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  Generation-recombination and trap-assisted tunneling in long wavelength infrared minority electron unipolar photodetectors based on InAs/GaSb superlattice
F. Callewaert, A.M. Hoang, and M. Razeghi
Applied Physics Letters, 104, 053508 (2014)-- February 6, 2014 ...[Visit Journal]
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10−5 A/cm² and a differential resistance-area of 3 700 Ω·cm² are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 1011 Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current. [reprint (PDF)]
 
3.  Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes
E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, 89 (24)-- December 11, 2006 ...[Visit Journal]
The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined [reprint (PDF)]
 
3.  Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection
G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal]
New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)]
 
3.  High power, room temperature, Terahertz sources and frequency comb based on Difference frequency generation at CQD
Manijeh Razeghi
Proc. of SPIE 12230, 1223006, September 2022 ...[Visit Journal]
Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG)and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. [reprint (PDF)]
 
3.  Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Feihu Wang, Steven Slivken, and Manijeh Razeghi
OSA Photonics Research •https://doi.org/10.1364/PRJ.423573 ...[Visit Journal]
High-power, high-speed quantum cascade lasers (QCLs) with stable emission in the mid-infrared regime are of great importance for applications in metrology, telecommunication, and fundamental tests of physics. Owing to the inter-sub-band transition, the unique ultrafast gain recovery time of the QCL with picosecond dynamics is expected to overcome the modulation limit of classical semiconductor lasers and bring a revolution for the next generation of ultrahigh-speed optical communication. Therefore, harmonic injection locking, offering the possibility to fast modulate and greatly stabilize the laser emission beyond the rate limited by cavity length, is inherently adapted to QCLs. In this work, we demonstrate for the first time the harmonic injection locking of a mid-infrared QCL with an output power over 1 watt in continuous-wave operation at 288 K. Compared with an unlocked laser, the inter-mode spacing fluctuation of an injection locked QCL can be considerably reduced by a factor above 1×10 E3, which permits the realization of an ultra-stable mid-infrared semiconductor laser with high phase coherence and frequency purity. Despite temperature change, this fluctuation can be still stabilized to hertz level by a microwave modulation up to ∼18 GHz. These results open up the prospect of the applications of mid-infrared QCL technology for frequency comb engineering, metrology and the next generation ultrahigh-speed telecommunication. It may also stimulate new schemes for exploring ultrafast mid-infrared pulse generation in QCLs. [reprint (PDF)]
 
3.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
3.  The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan
SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal]
The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)]
 
3.  High performance LWIR Type-II InAs/GaSb superlattice photodetectors and infrared focal plane array
Y. Wei, A. Hood, A. Gin, V. Yazdanpanah, M. Razeghi and M. Tidrow
SPIE Conference, Jose, CA, Vol. 5732, pp. 309-- January 22, 2005 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs-GaSb superlattices grown on n-type GaSb substrate with a 50% cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Bias-selectable three-color short-, extended-short-, and mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices
Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4275-4278-- October 16, 2017 ...[Visit Journal]
A bias-selectable, high operating temperature, three-color short-, extended-short-, and mid-wavelength infrared photodetector based on InAs/GaSb/AlSb type-II superlattices on GaSb substrate has been demonstrated. The short-, extended-short-, and mid-wavelength channels’ 50% cutoff wavelengths were 2.3, 2.9, and 4.4μm, respectively, at 150K. The mid-wavelength channel exhibited a saturated quantum efficiency of 34% at 4μm under +200 mV bias voltage in a front-side illumination configuration and without any antireflection coating. At 200mV, the device exhibited a dark current density of 8.7×10−5  A/cm2 providing a specific detectivity of ∼2×1011  cm·Hz1/2/W at 150K. The short-wavelength channel achieved a saturated quantum efficiency of 20% at 1.8μm. At −10  mV, the device’s dark current density was 5.5×10−8  A/cm2. At zero bias, its specific detectivity was 1×1011  cm·Hz1/2/W at 150K. The extended short-wavelength channel achieved a saturated quantum efficiency of 22% at 2.75 μm. Under −2  V bias voltage, the device exhibited a dark current density of 1.8×10−6  A/cm2 providing a specific detectivity of 6.3×1011  cm·Hz1/2/W at 150K. [reprint (PDF)]
 
3.  Recent advances in InAs/InAs1- xSbx/AlAs1-xSbx gap-engineered Type-II superlattice-based photodetectors
Manijeh Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang
Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705 -- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  Gas sensing spectroscopy system utilizing a sample grating distributed feedback quantum cascade laser array and type II superlattice detector
Nathaniel R. Coirier; Andrea I. Gomez-Patron; Manijeh Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128815-- January 31, 2020 ...[Visit Journal]
Gas spectroscopy is a tool that can be used in a variety of applications. One example is in the medical field, where it can diagnose patients by detecting biomarkers in breath, and another is in the security field, where it can safely alert personnel about ambient concentrations of dangerous gas. In this paper, we document the design and construction of a system compact enough to be easily deployable in defense, healthcare, and chemical safety environments. Current gas sensing systems use basic quantum cascade lasers (QCLs) or distributed feedback quantum cascade lasers (DFB QCLs) with large benchtop signal recovery systems to determine gas concentrations. There are significant issues with these setups, namely the lack of laser tunability and the lack of practicality outside of a very clean lab setting. QCLs are advantageous for gas sensing purposes because they are the most efficient lasers at the mid infrared region (MIR). This is necessary since gases tend to have stronger absorption lines in the MIR range than in the near-infrared (NIR) region. To incorporate the efficiency of a QCL with wide tuning capabilities in the MIR region, sampled grating distributed feedback (SGDFB) QCLs are the answer as they have produced systems that are widely tunable, which is advantageous for scanning a robust and complete absorption spectrum. The system employs a SGDFB QCL array emitter, a Type II InAsSb Superlattice detector receiver, a gas cell, and a cooling system. [reprint (PDF)]
 
3.  The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal]
A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)]
 
3.  High performance Type-II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan
SPIE Conference, Orlando, FL, Vol. 5783, pp. 86-- March 28, 2005 ...[Visit Journal]
We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type-II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 µm up to 32 µm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays are presented. [reprint (PDF)]
 
3.  High Frequency Extended Short-Wavelength Infrared Heterojunction Photodetectors Based on InAs/GaSb/AlSb Type-II Superlattices
Romain Chevallier, Abbas Haddadi, Ryan McClintock, Arash Dehzangi , Victor Lopez-Dominguez, Pedram Khalili Amiri, Manijeh Razeghi
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 6-- December 1, 2018 ...[Visit Journal]
InAs/GaSb/AlSb type-II superlattice-based photodetectors, with 50% cut-off wavelength of 2.1 µm and a −3 dB cut-off frequency of 4.8 GHz, are demonstrated, for 10 µm diameter circular mesas under 15 V applied reverse bias. A study of the cut-off frequency with applied bias and mesa size was performed to evaluate some of the limiting factors of photodetectors high frequency performance. [reprint (PDF)]
 
3.  Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011 ...[Visit Journal]
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. [reprint (PDF)]
 
3.  Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020 ...[Visit Journal]
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. [reprint (PDF)]
 
3.  Beryllium compensation doping of InAs/GaSb infrared superlattice photodiodes
D. Hoffman, B.M. Nguyen, P.Y. Delaunay, A. Hood, M. Razeghi and J. Pellegrino
Applied Physics Letters, Vol. 91, No. 14, p. 143507-1-- October 1, 2007 ...[Visit Journal]
Capacitance-voltage measurements in conjunction with dark current measurements on InAs/GaSb long wavelength infrared superlattice photodiodes grown by molecular-beam epitaxy on GaSb substrates are reported. By varying the beryllium concentration in the InAs layer of the active region, the residually n-type superlattice is compensated to become slightly p-type. By adjusting the doping, the dominant dark current mechanism can be varied from diffusion to Zener tunneling. Minimization of the dark current leads to an increase of the zero-bias differential resistance from less than 4 to 32 cm2 for a 100% cutoff of 12.05 µm [reprint (PDF)]
 
3.  Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes
A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal]
The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)]
 

Page 3 of 27:  Prev << 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)