| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (142 Items)
| 1. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
| 1. | Use of Yttria-Stabilised Zirconia Substrates for Zinc Oxide Mediated Epitaxial Lift-off of Superior Yttria-Stabilised Zirconia Thin Films D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi Proc. of SPIE Vol. 12887, Oxide-based Materials and Devices XV, 128870P 2024, San Francisco),doi: 10.1117/12.3023431 ...[Visit Journal] ZnO layers were grown on (100) and (111) oriented YSZ substrates by pulsed laser deposition (PLD). X-ray diffraction
studies revealed growth of wurtzite ZnO with strong preferential (0002) orientation. The ZnO layer on YSZ (111)
showed distinct Pendellosung fringes and a more pronounced c-axis orientation (rocking curve of 0.08°). Atomic force
microscopy revealed RMS roughnesses of 0.7 and 2.2nm for the ZnO on the YSZ (111) and YSZ (100), respectively.
YSZ was then grown on the ZnO buffered YSZ (111) substrate by PLD. XRD revealed that the YSZ overlayer grew
with a strong preferential (111) orientation. The YSZ/ZnO/YSZ (111) top surface was temporary bonded to an Apiezon
wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer
and release the YSZ from the substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus
confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax
carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ,
however. XRD suggested that this may have been due to compressive epitaxial strain release. [reprint (PDF)] |
| 1. | Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal] Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)] |
| 1. | Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal] We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)] |
| 1. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
| 1. | InAs quantum dot infrared photodetectors on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal] We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)] |
| 1. | High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal] Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)] |
| 1. | Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature Z. Vashaei, C. Bayram and M. Razeghi Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal] GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)] |
| 1. | High-performance bias-selectable dual-band Short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices M. Razeghi; A.M. Hoang; A. Haddadi; G. Chen; S. Ramezani-Darvish; P. Bijjam; P. Wijewarnasuriy; E. Decuir Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041W (June 18, 2013)-- June 18, 2013 ...[Visit Journal] We report a bias selectable dual-band Type-II superlattice-based short-wave infrared (SWIR) and mid-wave infrared (MWIR) co-located photodetector capable of active and passive imaging. A new double-layer etch-stop scheme is introduced for back-side-illuminated photodetectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ∼1×10-5 A/cm2 for the ∼4.2 μm cut-off MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F/2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using and integration time of 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. An excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)] |
| 1. | Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 ...[Visit Journal] Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. [reprint (PDF)] |
| 1. | Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal] In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)] |
| 1. | High Power, Room Temperature InP-Based Quantum Cascade Laser Grown on Si Steven Slivken and Manijeh Razeghi Journal of Quantum Electronics, Vol. 58, No. 6, 2300206 ...[Visit Journal] We report on the realization of an InP-based long
wavelength quantum cascade laser grown on top of a silicon substrate. This demonstration first required the development of an epitaxial template with a smooth surface, which combines two methods of dislocation filtering. Once wafer growth
was complete, a lateral injection buried heterostructure laser geometry was employed for efficient current injection and low loss. The laser emits at a wavelength of 10.8 μm and is capable of operation above 373 K, with a high peak power
(>4 W) at room temperature. Laser threshold behavior with temperature is characterized by a T0 of 178 K. The far field beam shape is single lobed, showing fundamental transverse mode operation. [reprint (PDF)] |
| 1. | Gain and recombination dynamics of quantum-dot infrared photodetectors H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi Physical Review B, 74 (20)-- November 15, 2006 ...[Visit Journal] In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. [reprint (PDF)] |
| 1. | Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency F. Wang, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal] In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)] |
| 1. | Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
| 1. | Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal] We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on
a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb
surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology.
On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with
a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb
substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)] |
| 1. | Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, & Manijeh Razeghi Nature Scientific Reports 7, Article number: 3379-- June 13, 2017 ...[Visit Journal] Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)] |
| 1. | Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal] The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)] |
| 1. | High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal] A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix
and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured
to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low
dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was
achieved at −0.9 V bias [reprint (PDF)] |
| 1. | Growth and Characterization of Very Long Wavelength Type-II Infrared Detectors H. Mohseni, A. Tahraoui, J. Wojkowski, M. Razeghi, W. Mitchel, and A. Saxler SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] We report on the growth and characterization of type-II IR detectors with a InAs/GaSb superlattice active layer in the 15-19 μm wavelength range. The material was grown by molecular beam epitaxy on semi-insulating GaAs substrates. The material was processed into photoconductive detectors using standard photolithography, dry etching, and metalization. The 50 percent cut-off wavelength of the detectors is about 15.5 μm with a responsivity of 90 mA/W at 80 K. The 90 percent-10 percent cut-off energy width of the responsivity is only 17 meV which is an indication of the uniformity of the superlattices. These are the best reported values for type-II superlattices grown on GaAs substrates. [reprint (PDF)] |
| 1. | Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal] Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)] |
| 1. | Midinfrared Semiconductor Photonics – A Roadmap:Quantum Cascade Lasers MANIJEH RAZEGHI arXiv:2511.03868 [physics.optics] ...[Visit Journal] Mid-wave infrared (IR) quantum cascade lasers (QCLs) offer high output
power, excellent efficiency, broad wavelength tunability, and elevated
operating temperatures, especially when operating in the 3–12 μm
wavelength range. These characteristics make them highly promising for a
wide range of applications, including high-resolution molecular spectroscopy,
ultra-low-loss optical fiber communications using fluoride-based glasses (with
attenuation below 2.5×10⁻⁴ dB/km), trace gas detection, air pollution
monitoring (as many molecules, particularly hydrocarbons, exhibiting strong
absorption lines in this spectral region), and medical diagnostics. This article
presents a comprehensive overview of the development of QCLs, highlighting
key milestones, the current state of the technology, and future directions,
framed within the broader context of the Semiconductor Mid-Infrared
Photonics Roadmap. |
| 1. | Continuous-wave operation of λ ~ 4.8 µm quantum-cascade lasers at room temperature A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 85 (12)-- September 20, 2004 ...[Visit Journal] Continuous-wave (cw) operation of quantum-cascade lasers emitting at λ~4.8 µm is reported up to a temperature of 323 K. Accurate control of layer thickness and strain-balanced material composition is demonstrated using x-ray diffraction. cw output power is reported to be in excess of 370 mW per facet at 293 K, and 38 mW per facet at 323 K. Room-temperature average power measurements are demonstrated with over 600 mW per facet at 50% duty cycle with over 300 mW still observed at 100% (cw) duty cycle. [reprint (PDF)] |
| 1. | High performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices A.M. Hoang, G. Chen, A. Haddadi and M. Razeghi SPIE Proceedings, Vol. 8631, p. 86311K-1, Photonics West, San Francisco, CA-- February 5, 2013 ...[Visit Journal] Active and passive imaging in a single camera based on the combination of short-wavelength and mid-wavelength infrared detection is highly needed in a number of tracking and reconnaissance missions. Due to its versatility in band-gap engineering, Type-II InAs/GaSb/AlSb superlattice has emerged as a candidate highly suitable for this
multi-spectral detection.
In this paper, we report the demonstration of high performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattice with designed cut-off wavelengths of 2 μm and 4 μm. Taking advantages of the high performance short-wavelength and mid-wavelength single color photodetectors, back-to-back p-i-n-n-i-p photodiode structures were grown on GaSb substrate by molecular beam epitaxy. At 150 K, the short-wave channel exhibited a quantum efficiency of 55%, a dark current density of 1.0x10-9 A/cm² at -50 mV bias voltage, providing an associated shot noise detectivity of 3.0x1013 Jones. The mid-wavelength channel exhibited a quantum efficiency of 33% and a dark current density of 2.6x10-5 A/cm² at 300 mV bias voltage,
resulting in a detectivity of 4.0x1011 Jones. The operations of the two absorber channels are selectable by changing the polarity of applied bias voltage. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the near room temperature applications J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal] We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (142 Items)
|