| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (142 Items)
| 1. | Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation F. Wang, S. Slivken, D. H. Wu, and M. Razeghi Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal] We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage.
[reprint (PDF)] |
| 1. | Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices M. Razeghi, A. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, R. McClintock Infrared Physics & Technology, Volume 59, Pages 41-52 (2013)-- July 1, 2013 ...[Visit Journal] Type-II InAs/GaSb superlattices (T2SLs), a system of multi-interacting quantum wells, was introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention especially for infrared detection. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of T2SL-based photo-detectors and focal plane arrays for imaging in different infrared regions, from SWIR to VLWIR, and the future outlook of this material system. [reprint (PDF)] |
| 1. | Impact of scaling base thickness on the performance of heterojunction phototransistors Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi Nanotechnology 28, 10LT01-- February 2, 2017 ...[Visit Journal] In this letter we report the effect of vertical scaling on the optical and electrical performance of
mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base
was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)] |
| 1. | Radiative recombination of confined electrons at the MgZnO/ ZnO heterojunction interface Sumin Choi, David J. Rogers, Eric V. Sandana, Philippe Bove, Ferechteh H. Teherani, Christian Nenstiel, Axel Hoffmann, Ryan McClintock, Manijeh Razeghi, David Look, Angus Gentle, Matthew R. Phillips & Cuong Ton-That Nature Scientific Reports 7, pp. 7457-- August 7, 2017 ...[Visit Journal] We investigate the optical signature of the interface in a single MgZnO/ZnO heterojunction, which exhibits two orders of magnitude lower resistivity and 10 times higher electron mobility compared with the MgZnO/Al2O3 film grown under the same conditions. These impressive transport properties are attributed to increased mobility of electrons at the MgZnO/ZnO heterojunction interface. Depthresolved cathodoluminescence and photoluminescence studies reveal a 3.2 eV H-band optical emission from the heterointerface, which exhibits excitonic properties and a localization energy of 19.6 meV. The emission is attributed to band-bending due to the polarization discontinuity at the interface, which leads to formation of a triangular quantum well and localized excitons by electrostatic coupling. [reprint (PDF)] |
| 1. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
| 1. | High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal] Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)] |
| 1. | Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011 ...[Visit Journal] We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. [reprint (PDF)] |
| 1. | III-Nitride Avalanche Photodiodes P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 ...[Visit Journal] Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. [reprint (PDF)] |
| 1. | Effect of sidewall surface recombination on the quantum efficiency in a Y2O3 passivated gated type-II InAs/GaSb long-infrared photodetector array G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, S. R. Darvish, and M. Razeghi Appl. Phys. Lett. 103, 223501 (2013)-- November 25, 2013 ...[Visit Journal] Y2O3 was applied to passivate a long-wavelength infrared type-II superlattice gated photodetector array with 50% cut-off wavelength at 11 μm, resulting in a saturated gate bias that was 3 times lower than in a SiO2 passivated array. Besides effectively suppressing surface leakage, gating technique exhibited its ability to enhance the quantum efficiency of 100 × 100 μm size mesa from 51% to 57% by suppressing sidewall surface recombination. At 77 K, the gated photodetector showed dark current density and resistance-area product at −300 mV of 2.5 × 10−5 A/cm² and 1.3 × 104 Ω·cm², respectively, and a specific detectivity of 1.4 × 1012 Jones. [reprint (PDF)] |
| 1. | Use of Yttria-Stabilised Zirconia Substrates for Zinc Oxide Mediated Epitaxial Lift-off of Superior Yttria-Stabilised Zirconia Thin Films D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi Proc. of SPIE Vol. 12887, Oxide-based Materials and Devices XV, 128870P 2024, San Francisco),doi: 10.1117/12.3023431 ...[Visit Journal] ZnO layers were grown on (100) and (111) oriented YSZ substrates by pulsed laser deposition (PLD). X-ray diffraction
studies revealed growth of wurtzite ZnO with strong preferential (0002) orientation. The ZnO layer on YSZ (111)
showed distinct Pendellosung fringes and a more pronounced c-axis orientation (rocking curve of 0.08°). Atomic force
microscopy revealed RMS roughnesses of 0.7 and 2.2nm for the ZnO on the YSZ (111) and YSZ (100), respectively.
YSZ was then grown on the ZnO buffered YSZ (111) substrate by PLD. XRD revealed that the YSZ overlayer grew
with a strong preferential (111) orientation. The YSZ/ZnO/YSZ (111) top surface was temporary bonded to an Apiezon
wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer
and release the YSZ from the substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus
confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax
carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ,
however. XRD suggested that this may have been due to compressive epitaxial strain release. [reprint (PDF)] |
| 1. | Room-temperature continuous-wave operation of quantum-cascade lasers at λ ~ 4 µm J.S. Yu, S.R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi Applied Physics Letters 88 (4)-- January 23, 2006 ...[Visit Journal] High-power cw λ~4 μm quantum-cascade lasers (QCLs) are demonstrated. The effect of different cavity length and laser die bonding is also investigated. For a high-reflectivity-coated 11-μm-wide and 4-mm-long epilayer-down bonded QCL, cw output powers as high as 1.6 W at 80 K and 160 mW at 298 K are obtained, and the cw operation is achieved up to 313 K with 12 mW. [reprint (PDF)] |
| 1. | Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal] Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)] |
| 1. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
| 1. | InAs quantum dot infrared photodetectors on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal] We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)] |
| 1. | High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal] Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)] |
| 1. | Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature Z. Vashaei, C. Bayram and M. Razeghi Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal] GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)] |
| 1. | High-performance bias-selectable dual-band Short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices M. Razeghi; A.M. Hoang; A. Haddadi; G. Chen; S. Ramezani-Darvish; P. Bijjam; P. Wijewarnasuriy; E. Decuir Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041W (June 18, 2013)-- June 18, 2013 ...[Visit Journal] We report a bias selectable dual-band Type-II superlattice-based short-wave infrared (SWIR) and mid-wave infrared (MWIR) co-located photodetector capable of active and passive imaging. A new double-layer etch-stop scheme is introduced for back-side-illuminated photodetectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ∼1×10-5 A/cm2 for the ∼4.2 μm cut-off MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F/2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using and integration time of 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. An excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)] |
| 1. | Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 ...[Visit Journal] Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. [reprint (PDF)] |
| 1. | Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal] Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)] |
| 1. | Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal] We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)] |
| 1. | Gain and recombination dynamics of quantum-dot infrared photodetectors H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi Physical Review B, 74 (20)-- November 15, 2006 ...[Visit Journal] In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. [reprint (PDF)] |
| 1. | Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency F. Wang, S. Slivken, D. H. Wu, and M. Razeghi AIP Advances 10, 075012-- July 14, 2020 ...[Visit Journal] In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. [reprint (PDF)] |
| 1. | Uncooled InAs/GaSb Type-II infrared detectors grown on GaAs substrate for the 8–12 μm atmospheric window H. Mohseni, J. Wojkowski, M. Razeghi, G. Brown, and W. Mitchel IEEE Journal of Quantum Electronics 35 (7)-- July 1, 1999 ...[Visit Journal] The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2×108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)] |
| 1. | Demonstration of mid-infrared type-II InAs/GaSb superlattice photodiodes grown on GaAs substrate B.M. Nguyen, D. Hoffman, E.K. Huang, S. Bogdanov, P.Y. Delaunay, M. Razeghi and M.Z. Tidrow Applied Physics Letters, Vol. 94, No. 22-- June 8, 2009 ...[Visit Journal] We report the growth and characterization of type-II InAs/GaSb superlattice photodiodes grown on
a GaAs substrate. Through a low nucleation temperature and a reduced growth rate, a smooth GaSb
surface was obtained on the GaAs substrate with clear atomic steps and low roughness morphology.
On the top of the GaSb buffer, a p+-i-n+ type-II InAs/GaSb superlattice photodiode was grown with
a designed cutoff wavelength of 4 μm. The detector exhibited a differential resistance at zero bias (R0A)in excess of 1600 Ω·cm2 and a quantum efficiency of 36.4% at 77 K, providing a specific detectivity of 6 X 1011 cm·Hz½/W and a background limited operating temperature of 100 K with a 300 K background. Uncooled detectors showed similar performance to those grown on GaSb
substrates with a carrier lifetime of 110 ns and a detectivity of 6 X 108 cm·Hz½/W. [reprint (PDF)] |
| 1. | Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal] In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)] |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (142 Items)
|