| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (145 Items)
| 1. | Investigation of MgZnO/ZnO heterostructures grown on c-sapphire substrates by pulsed laser deposition D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; A. Lusson ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86261X (March 18, 2013)-- March 18, 2013 ...[Visit Journal] MgZnO thin films were grown on c-sapphire and ZnO-coated c-sapphire substrates by pulsed laser deposition from a ZnMgO target with 4 at% Mg. The MgZnO grown on the ZnO underlayer showed significantly better crystal quality than that grown directly on sapphire. AFM studies revealed a significant deterioration in surface morphology for the MgZnO layers compared with the ZnO underlayer. Optical transmission studies indicated a MgZnO bandgap of 3.61eV (compared with 3.34eV for the ZnO), which corresponds to a Mg content of about 16.1 at%. The MgZnO/ZnO heterojunction showed an anomalously low resistivity, which was more than two orders of magnitude less than the MgZnO layer and an order of magnitude lower than that for the ZnO layer. It was suggested that this may be attributable to the presence of a 2D electron gas at the ZnMgO/ZnO heterointerface. [reprint (PDF)] |
| 1. | Continuous operation of a monolithic semiconductor terahertz source at room temperature Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi Appl. Phys. Lett. 104, 221105 (2014)-- June 3, 2014 ...[Visit Journal] We demonstrate room temperature continuous wave THz sources based on intracavity difference-frequency generation from mid-infrared quantum cascade lasers. Buried ridge, buried composite distributed-feedback waveguide with Čerenkov phase-matching scheme is used to reduce the waveguide loss and enhance the heat dissipation for continuous wave operation. Continuous emission at 3.6 THz with a side-mode suppression ratio of 20 dB and output power up to 3 μW are achieved, respectively. THz peak power is further scaled up to 1.4 mW in pulsed mode by increasing the mid-infrared power through increasing the active region doping and device area. [reprint (PDF)] |
| 1. | High Power Mid-Infrared Quantum Cascade Lasers Grown on GaAs Steven Slivken and Manijeh Razeghi Photonics 2022, 9(4), 231 (COVER ARTICLE) ...[Visit Journal] The motivation behind this work is to show that InP-based intersubband lasers with high power can be realized on substrates with significant lattice mismatch. This is a primary concern for the integration of mid-infrared active optoelectronic devices on low-cost photonic platforms, such as Si. As evidence, an InP-based mid-infrared quantum cascade laser structure was grown on a GaAs substrate, which has a large (4%) lattice mismatch with respect to InP. Prior to laser core growth, a metamorphic buffer layer of InP was grown directly on a GaAs substrate to adjust the lattice constant. Wafer characterization data are given to establish general material characteristics. A simple fabrication procedure leads to lasers with high peak power (>14 W) at room temperature. These results are extremely promising for direct quantum cascade laser growth on Si substrates. [reprint (PDF)] |
| 1. | High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron B. Gokden, S. Slivken and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal] Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)] |
| 1. | Nickel oxide growth on Si (111), c-Al2O3 and FTO/glass by pulsed laser deposition V. E. Sandana ; D. J. Rogers ; F. Hosseini Teherani ; P. Bove ; R. McClintock ; M. Razeghi 03/07/2014-- March 7, 2014 ...[Visit Journal] NiO was grown on Si (111), c-Al2O3 and FTO/glass substrates by pulsed laser deposition (PLD). X-Ray Diffraction (XRD) and scanning electron microscope (SEM) studies revealed that layers grown on c-Al2O3 were fcc NiO with a dense morphology of cubic grains that were strongly (111) oriented along the growth direction. The relatively low ω rocking curve linewidth, of 0.12°suggests that there may have been epitaxial growth on the c-Al2O3 substrate. XRD and SEM indicated that films grown on Si (111) were also fcc NiO, with cubic grains, but that the grain orientation was random. This is consistent with the presence of an amorphous SiO2 layer at the surface of the Si substrate, which precluded epitaxial growth. NiO grown at lower temperature (200°C) on temperature-sensitive FTO/glass substrates showed no evidence of crystallinity in XRD and SEM studies. After flash annealing in air, however, peaks characteristic of randomly oriented fcc NiO appeared in the XRD scans and the surface morphology became more granular in appearance. Such layers appear promising for the development of future dye-sensitised solar cell devices based on NiO grown by PLD. [reprint (PDF)] |
| 1. | Demonstration of long wavelength infrared Type-II InAs/InAs1-xSbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition D. H. Wu, A. Dehzangi, Y. Y. Zhang, M. Razeghi Applied Physics Letters 112, 241103-- June 12, 2018 ...[Visit Journal] We report the growth and characterization of long wavelength infrared type-II InAs/InAs1−xSbx superlattices photodiodes with a 50% cut-off wavelength at 8.0 μm on GaSb substrate grown by metalorganic chemical vapor deposition. At 77 K, the photodiodes exhibited a differential resistance at zero bias (R0A) 8.0 Ω·cm2, peak responsivity of 1.26 A/W corresponding to a quantum efficiency of 21%. A specific detectivity of 5.4×1010 cm·Hz1/2/W was achieved at 7.5 μm. [reprint (PDF)] |
| 1. | Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation F. Wang, S. Slivken, D. H. Wu, and M. Razeghi Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020 ...[Visit Journal] We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage.
[reprint (PDF)] |
| 1. | High Performance Solar-Blind Ultraviolet Focal Plane Arrays Based on AlGaN Erdem Cicek, Ryan McClintock, Abbas Haddadi, William A. Gaviria Rojas, and Manijeh Razeghi IEEE Journal of Quantum Electronics, Vol. 50, Issue 8, p 591-595-- August 1, 2014 ...[Visit Journal] We report on solar-blind ultraviolet, AlxGa1-x N-
based,p-i-n,focal plane array (FPA) with 92% operability. At the peak detection wavelength of 278 nm, 320×256-FP A-pixel showed unbiased peak external quantum efficiency (EQE) and responsivity of 49% and 109 mA/W, respectively, increasing to
66% under 5 volts of reverse bias. Electrical measurements yielded a low-dark current density: <7×10-9A/cm², at FPA operating voltage of 2 volts of reverse bias. [reprint (PDF)] |
| 1. | Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020 ...[Visit Journal] Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. [reprint (PDF)] |
| 1. | High power broad area quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal] Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)] |
| 1. | Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal] NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting
gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)] |
| 1. | Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal] Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)] |
| 1. | High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 ...[Visit Journal] Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. [reprint (PDF)] |
| 1. | Deep ultraviolet (254 nm) focal plane array E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011 ...[Visit Journal] We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
| 1. | Type-II InAs/GaSb/AlSb superlatticebased heterojunction phototransistors: back to the future Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV- Page-1054004-1-- January 26, 2018 ...[Visit Journal] Most of reported HPTs in literatures are based on InGaAs compounds that cover NIR spectral region. However, InGaAs compounds provide limited cut-off wavelength tunability. In contrast, type-II superlattices (T2SLs) are a developing new material system with intrinsic advantages such as great flexibility in bandgap engineering, low growth and manufacturing cost, high-uniformity, auger recombination suppression, and high carrier effective mass that are becoming an attractive candidate for infrared detection and imaging from short-wavelength infrared to very long wavelength infrared regime. We present the recent advancements in T2SL-based heterojunction phototransistors in e– SWIR, MWIR and LWIR spectral ranges. A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Then, we present the effect of vertical scaling on the optical and electrical performance of heterojunction phototransistors, where the performance of devices with
different base width was compared as the base was scaled from 60 down to 40 nm. [reprint (PDF)] |
| 1. | Photonic crystal distributed feedback quantum cascade lasers with 12 W output power Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal] We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)] |
| 1. | Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015 ...[Visit Journal] (In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN
peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related
visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. [reprint (PDF)] |
| 1. | Suppressing Spectral Crosstalk in Dual-Band LongWavelength Infrared Photodetectors With Monolithically Integrated Air-Gapped Distributed Bragg Reflectors Yiyun Zhang, Abbas Haddadi, Arash Dehzangi , Romain Chevallier, Manijeh Razeghi IEEE Journal of Quantum Electronics Volume: 55, Issue:1-- November 22, 2018 ...[Visit Journal] Antimonide-based type-II superlattices (T2SLs) have made possible the development of high-performance infrared cameras for use in a wide variety of thermal imaging applications, many of which could benefit from dual-band imaging. The performance of this material system has not reached its limits. One of the key issues in dual-band infrared photodetection is spectral crosstalk. In this paper, air-gapped distributed Bragg reflectors (DBRs) have been monolithically integrated between the two channels in long-/very long-wavelength dualband InAs/InAs1−xSbx/AlAs1−xSbx-based T2SLs photodetectors to suppress the spectral crosstalk. This air-gapped DBR has achieved a significant spectral suppression in the 4.5–7.5-µm photonic stopband while transmitting the optical wavelengths beyond 7.5 µm, which is confirmed by theoretical calculations, numerical simulation, and experimental results. [reprint (PDF)] |
| 1. | Background–limited long wavelength infrared InAs/InAsSb type-II superlattice-based photodetectors operating at 110 K Abbas Haddadi, Arash Dehzangi, Sourav Adhikary, Romain Chevallier, and Manijeh Razeghi APL Materials 5, 035502 -- February 13, 2017 ...[Visit Journal] We report the demonstration of high-performance long-wavelength infrared (LWIR) nBn photodetectors based on InAs/InAsSb type-II superlattices. A new saw-tooth superlattice design was used to implement the electron barrier of the photodetectors. The device exhibited a cut-off wavelength of ∼10 μm at 77 K. The photodetector exhibited a peak responsivity of 2.65 A/W, corresponding to a quantum efficiency of 43%. With an R × A of 664 Ω·cm² and a dark current density of 8 × 10−5 A/cm², under −80 mV bias voltage at 77 K, the photodetector exhibited a specific detectivity of 4.72 × 1011 Jones and a background–limited operating temperature of 110 K. [reprint (PDF)] |
| 1. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
| 1. | InAs quantum dot infrared photodetectors on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal] We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)] |
| 1. | Advances in antimonide-based Type-II superlattices for infrared detection and imaging at center for quantum devices M. Razeghi, A. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, R. McClintock Infrared Physics & Technology, Volume 59, Pages 41-52 (2013)-- July 1, 2013 ...[Visit Journal] Type-II InAs/GaSb superlattices (T2SLs), a system of multi-interacting quantum wells, was introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention especially for infrared detection. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of T2SL-based photo-detectors and focal plane arrays for imaging in different infrared regions, from SWIR to VLWIR, and the future outlook of this material system. [reprint (PDF)] |
| 1. | Impact of scaling base thickness on the performance of heterojunction phototransistors Arash Dehzangi, Abbas Haddadi, Sourav Adhikary, and Manijeh Razeghi Nanotechnology 28, 10LT01-- February 2, 2017 ...[Visit Journal] In this letter we report the effect of vertical scaling on the optical and electrical performance of
mid-wavelength infrared heterojunction phototransistors based on type-II InAs/GaSb/AlSb superlattices. The performance of devices with different base thickness was compared as the base
was scaled from 60 down to 40 nm. The overall optical performance shows enhancement in responsively, optical gain, and specific detectivity upon scaling the base width. The saturated responsivity for devices with 40 nm bases reaches 8,845 and 9,528 A/W at 77 and 150 K, respectively, which is almost five times greater than devices with 60 nm bases. The saturated optical gain for devices with 40 nm bases is measured as 2,760 at 77 K and 3,081 at 150 K. The devices with 40 nm bases also exhibit remarkable enhancement in saturated current gain, with 17,690 at 77 K, and 19,050 at 150 K. [reprint (PDF)] |
| 1. | Imprinting of Nanoporosity in Lithium-Doped Nickel Oxide through the use of Sacrificial Zinc Oxide Nanotemplates Vinod E. Sandana, David J. Rogers, Ferechteh H. Teheran1, Philippe Bove, Ryan McClintock and Manijeh Razeghi Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101052C-- April 3, 2017 ...[Visit Journal] Methods for simultaneously increasing the conductivity and the porosity of NiO layers grown by pulsed laser deposition (PLD) were investigated in order to develop improved photocathodes for p-DSSC applications. NiO:Li (20at%) layers grown on c-Al2O3 by PLD showed a sharp drop in conductivity with increasing substrate temperature. Layers grown at room temperature were more than two orders of magnitude more conductive than undoped NiO layers but did not show evidence of any porosity in Scanning Electron Microscope (SEM) images. A new method for imposing a nanoporosity in NiO was developed based on a sacrificial template of nanostructured ZnO. SEM images and EDX spectroscopy showed that a nanoporous morphology had been imprinted in the NiO overlayer after preferential chemical etching away of the nanostructured ZnO underlayer. Beyond p-DSSC applications, this new process could represent a new paradigm for imprinting porosity in a whole range of materials. [reprint (PDF)] |
| 1. | Toward realization of small-size dual-band long-wavelength infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices Romain Chevallier, Abbas Haddadi, Manijeh Razeghi Solid-State Electronics 136, pp. 51-54-- June 20, 2017 ...[Visit Journal] In this study, we demonstrate 12 × 12 µm² high-performance, dual-band, long-wavelength infrared (LWIR) photodetectors based on InAs/GaSb/AlSb type-II superlattices. The structure consists of two back-to-back heterojunction photodiodes with 2 µm-thick p-doped absorption regions. High quality dry etching combined with SiO2 passivation results in a surface resistivity value of 7.9 × 105 Ω·cm for the longer (red) channel and little degradation of the electrical performance. The device reaches dark current density values of 4.5 × 10−4 A/cm² for the longer (red) and 1.3 × 10−4 A/cm² for the shorter (blue) LWIR channels at quantum efficiency saturation. It has 50% cut-off wavelengths of 8.3 and 11.2 µm for the blue and red channel, respectively, at 77 K in back-side illumination configuration and exhibits quantum efficiencies of 37% and 29%, respectively. This results in specific detectivity values of 2.5 × 1011 cm·Hz½/W and 1.3 × 1011 cm·Hz½/W at 77 K. [reprint (PDF)] |
Page 4 of 6: Prev << 1 2 3 4 5 6 >> Next (145 Items)
|