Page 5 of 27:  Prev << 1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)

3.  Performance characteristics of high-purity mid-wave and long-wave infrared type-II InAs/GaSb superlattice infrared photodiodes
A. Hood, M. Razeghi, V. Nathan and M.Z. Tidrow
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270U-- January 23, 2006 ...[Visit Journal]
The authors report on recent advances in the development of mid-, long-, and very long-wavelength infrared (MWIR, LWIR, and VLWIR) Type-II InAs/GaSb superlattice infrared photodiodes. The residual carrier background of binary Type-II InAs/GaSb superlattice photodiodes of cut-off wavelengths around 5 µm has been studied in the temperature range between 10 and 200 K. A four-point, capacitance-voltage technique on mid-wavelength and long-wavelength Type-II InAs/GaSb superlattice infrared photodiodes reveal residual background concentrations around 5×1014 cm-3. Additionally, recent progress towards LWIR photodiodes for focal plane array imaging applications is presented. [reprint (PDF)]
 
3.  Elimination of surface leakage in gate controlled Type-II InAs/GaSb mid-infrared photodetectors
G. Chen, B.-M. Nguyen, A.M. Hoang, E.K. Huang, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 18, p. 183503-1-- October 31, 2011 ...[Visit Journal]
The electrical performance of mid-infrared type-II superlattice M-barrier photodetectors is shown to be limited by surface leakage. By applying gate bias on the mesa sidewall surface, leakage current is significantly reduced. Qualitatively IV modeling shows diffusion-dominated behavior of dark current at temperatures greater than 120 K. At 110 K, the dark current of gated device is reduced by more than 2 orders of magnitude, reaching the measurement system noise floor. With a quantum efficiency of 48% in front side illumination configuration, a 4.7μm cut-off gated device attains a specific detectivity of 2.5 × 1014 cm·Hz½·W-1 at 110 K, which is 3.6 times higher than in ungated devices. [reprint (PDF)]
 
3.  Highly temperature insensitive quantum cascade lasers
Y. Bai, N. Bandyopadhyay, S. Tsao, E. Selcuk, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 25-- December 20, 2010 ...[Visit Journal]
An InP based quantum cascade laser (QCL) heterostructure emitting around 5 μm is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T(0) and T(1), for operations above room temperature. A T(0) value of 383 K and a T(1) value of 645 K are obtained within a temperature range of 298–373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 μm. [reprint (PDF)]
 
3.  The importance of band alignment in VLWIR type-II InAs/GaSb heterodiodes containing the M-structure barrier
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, S. Bogdanov, P. Manukar, M. Razeghi, and V. Nathan
SPIE Proceedings, San Jose, CA Volume 7222-15-- January 26, 2009 ...[Visit Journal]
The Type-II InAs/GaSb superlattice photon detector is an attractive alternative to HgCdTe photodiodes and QWIPS. The use of p+ - pi - M - N+ heterodiode allows for greater flexibility in enhancing the device performance. The utilization of the Empirical Tight Binding method gives the band structure of the InAs/GaSb superlattice and the new M- structure (InAs/GaSb/AlSb/GaSb) superlattice allowing for the band alignment between the binary superlattice and the M- superlattice to be determined and see how it affects the optical performance. Then by modifying the doping level of the M- superlattice an optimal level can be determined to achieve high detectivity, by simultaneously improving both photo-response and reducing dark current for devices with cutoffs greater than 14.5 µm. [reprint (PDF)]
 
3.  First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS
M. Razeghi, P.Y. Delaunay, B.M. Nguyen, A. Hood, D. Hoffman, R. McClintock, Y. Wei, E. Michel, V. Nathan and M. Tidrow
IEEE LEOS Newsletter 20 (5)-- October 1, 2006 ...[Visit Journal]
The concept of Type-II InAs/GaSb superlattice was first brought by Nobel Laureate L. Esaki, et al. in the 1970s. There had been few studies on this material system until two decades later when reasonable quality material growth was made possible using molecular beam epitaxy. With the addition of cracker cells for the group V sources and optimizations of material growth conditions, the superlattice quality become significantly improved and the detectors made of these superlattice materials can meet the demand in some practical field applications. Especially in the LWIR regime, it provides a very promising alternative to HgCdTe for better material stability and uniformity, etc. We have developed the empirical tight binding model (ETBM) for precise determination of the superlattice bandgap. [reprint (PDF)]
 
3.  High-performance InP-based midinfrared quantum cascade lasers at Northwestern University
M. Razeghi, Y. Bai, S. Slivken, and S.R. Darvish
SPIE Optical Engineering, Vol. 49, No. 11, November 2010, p. 111103-1-- November 15, 2010 ...[Visit Journal]
We present recent performance highlights of midinfrared quantum cascade lasers (QCLs) based on an InP material system. At a representative wavelength around 4.7 µm, a number of breakthroughs have been achieved with concentrated effort. These breakthroughs include watt-level continuous wave operation at room temperature, greater than 50% peak wall plug efficiency at low temperatures, 100-W-level pulsed mode operation at room temperature, and 10-W-level pulsed mode operation of photonic crystal distributed feedback quantum cascade lasers at room temperature. Since the QCL technology is wavelength adaptive in nature, these demonstrations promise significant room for improvement across a wide range of mid-IR wavelengths. [reprint (PDF)]
 
3.  Use of Sacrificial Zinc Oxide Template Layers for Epitaxial Lift-Off of Yttria-Stabilised Zirconia Thin Films
D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi
Proc. of SPIE 11687, 116872C (2021) ...[Visit Journal]
275 nm-thick Yttria-stabilised zirconia (YSZ) layers were grown on 240 nm-thick epitaxial (0002)-oriented ZnO buffer layers on c-sapphire substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) studies revealed high quality epitaxial growth with the YSZ having a preferential (111) orientation and a root mean square surface roughness of 1.4 nm over an area of 10 um x 10 um. The YSZ top surface was then temporary bonded to an Apiezon W wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer and release of the YSZ from the sapphire substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ, however, which was probably due to tensile epitaxial strain release. [reprint (PDF)]
 
3.  The effect of doping the M-barrier in very long-wave type-II InAs/GaSb heterodiodes
D. Hoffman, B.M. Nguyen, E.K. Huang, P.Y. Delaunay, M. Razeghi, M.Z. Tidrow and J. Pellegrino
Applied Physics Letters, Vol. 93, No. 3, p. 031107-1-- July 21, 2008 ...[Visit Journal]
A variation on the standard homo-diode Type-II superlattice with an M-barrier between the pi-region and the n-region is shown to suppress the dark currents. By determining the optimal doping level of the M-superlattice, dark current densities of 4.95 mA·cm-2 and quantum efficiencies in excess of 20% have been demonstrated at the moderate reverse bias of 50 mV; allowing for near background-limited performance with a Johnson-noise detectivity of 3.11×1010 Jones at 77 K for a 14.58 µm cutoff wavelength for large area diodes without passivation. This is comparable to values for the state-of-the-art HgCdTe photodiodes. [reprint (PDF)]
 
3.  High-Performance Focal Plane Arrays Based on InAs-GaSb Superlattices with a 10-micron Cutoff Wavelegth
P.Y. Delaunay, B.M. Nguyen, D. Hoffman and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 44, No. 5, p. 462-467-- May 1, 2008 ...[Visit Journal]
We report on the demonstration of a focal plane array based on Type-II InAs/GaSb superlattices grown on N-type GaSb substrate with a 50%-cutoff wavelength at 10 μm. The surface leakage occurring after flip-chip bonding and underfill in the Type-II devices was suppressed using a double heterostructure design. The R0A of diodes passivated with SiO2 was 23 Ω·cm2 after underfill. A focal plane array hybridized to an Indigo readout integrated circuit demonstrated a noise equivalent temperature difference of 33 mK at 81 K, with an integration time of 0.23 ms. [reprint (PDF)]
 
3.  High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 μm
WENJIA ZHOU,QUAN-YONG LU,DONG-HAI WU, STEVEN SLIVKEN, AND MANIJEH RAZEGHI
OPTICS EXPRESS 27, 15776-15785-- May 20, 2019 ...[Visit Journal]
We report a room-temperature eight-element phase-locked quantum cascade laser array emitting at 8 μm with a high continuous-wave power of 8.2 W and wall plug efficiency of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV) design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge type single-element Fabry-Perot laser operating in pulsed mode at 20 °C. [reprint (PDF)]
 
3.  High Performance InAs/GaSb Superlattice Photodiodes for the Very Long Wavelength Infrared Range
H. Mohseni, M. Razeghi, G.J. Brown, Y.S. Park
Applied Physics Letters 78 (15)-- April 9, 2001 ...[Visit Journal]
We report on the demonstration of high-performance p-i-n photodiodes based on type-II InAs/GaSb superlattices with 50% cut-off wavelength λc = 16 μm operating at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices show a current responsivity of 3.5 A/W at 80 K leading to a detectivity of ∼ 1.51×1010 cm·Hz½/W. The quantum efficiency of these devices is about 35% which is comparable to HgCdTe detectors with a similar active layer thickness. [reprint (PDF)]
 
2.  Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam
Steven Slivken, Donghai Wu & Manijeh Razeghi
Scientific Reports volume 9, Article number: 549-- January 24, 2019 ...[Visit Journal]
A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. A high quality output beam is realized with a simple, single-layer, anti-reflective coating. The beam shape and profile are shown to be independent of wavelength. [reprint (PDF)]
 
2.  Electroluminescence of InAs/GaSb heterodiodes
D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi
IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal]
The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)]
 
2.  Growth of In1-xTlxSb, a New Infrared Material, by Low-Pressure Metalorganic Chemical Vapor Deposition
Y.H. Choi, R. Sudharsanan, C, Besikci, and M. Razeghi
Applied Physics Letters 63 (3)-- July 19, 1993 ...[Visit Journal]
We report the growth of In1-xTlxSb, a new III-V alloy for long-wavelength infrared detector applications, by low-pressure metalorganic chemical vapor deposition. In1-xTlxSb with good surface morphology was obtained on both GaAs and InSb substrates at a growth temperature of 455 °C. X-ray diffraction measurements showed resolved peaks of In1-xTlxSb and InSb films. Infrared absorption spectrum of In1-xTlxSb showed a shift toward lower energies compared to InSb spectrum. Hall mobility data on In1-xTlxSb/InSb/GaAs structure showed enhanced mobility at low temperatures compared to InSb/GaAs structure. [reprint (PDF)]
 
2.  Self-assembled semiconductor quantum dot infrared photodetector operating at room temperature and focal plane array
Ho-Chul Lim; Stanley Tsao; Wei Zhang; Manijen Razeghi
Proc. SPIE 6542, Infrared Technology and Applications XXXIII, 65420R (May 14, 2007)-- May 14, 2007 ...[Visit Journal]
Self-assembled semiconductor quantum dots have attracted much attention because of their novel properties and thus possible practical applications including the lasers, detectors and modulators. Especially the photodetectors which have quantum dots in their active region have been developed and show promising performances such as high operation temperature due to three dimensional confinement of the carriers and normal incidence in contrast to the case of quantum well detectors which require special optical coupling schemes. Here we report our recent results for mid-wavelength infrared quantum dot infrared photodetector grown by low-pressure metalorganic chemical vapor deposition. The material system we have investigated consists of 25 period self-assembled InAs quantum dot layers on InAlAs barriers, which are lattice-matched to InP substrates, covered with InGaAs quantum well layers and InAlAs barriers. This active region was sandwiched by highly doped InP contact layers. The device operates at 4.1 μm with a peak detectivity of 2.8×1011 cm·Hz1/2/W at 120 K and a quantum efficiency of 35 %. The photoresponse can be observed even at room temperature resulting in a peak detectivity of 6×107 cm·Hz1/2/W. A 320×256 focal plane array has been fabricated in this kind of device. Its performance will also be discussed here. [reprint (PDF)]
 
2.  High-performance bias-selectable dual-band Short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices
M. Razeghi; A.M. Hoang; A. Haddadi; G. Chen; S. Ramezani-Darvish; P. Bijjam; P. Wijewarnasuriy; E. Decuir
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041W (June 18, 2013)-- June 18, 2013 ...[Visit Journal]
We report a bias selectable dual-band Type-II superlattice-based short-wave infrared (SWIR) and mid-wave infrared (MWIR) co-located photodetector capable of active and passive imaging. A new double-layer etch-stop scheme is introduced for back-side-illuminated photodetectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ∼1×10-5 A/cm2 for the ∼4.2 μm cut-off MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F/2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using and integration time of 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. An excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)]
 
2.  Geiger-mode operation of back-illuminated GaN avalanche photodiodes
J. L. Pau, R. McClintock, K. Minder, C. Bayram, P. Kung, M. Razeghi, E. Muñoz, and D. Silversmith
Applied Physics Letters, Vol. 91, No. 04, p. 041104 -1-- July 23, 2007 ...[Visit Journal]
We report the Geiger-mode operation of back-illuminated GaN avalanche photodiodes fabricated on transparent AlN templates specifically for back illumination in order to enhance hole-initiated multiplication. The spectral response in Geiger-mode operation was analyzed under low photon fluxes. Single photon detection capabilities were demonstrated in devices with areas ranging from 225 to 14,063 µm2. Single photon detection efficiency of 20% and dark count rate < 10 kHz were achieved in the smallest devices. [reprint (PDF)]
 
2.  High Quantum Efficiency Solar-Blind Photodetectors
R. McClintock, A. Yasan, K. Mayes, D. Shiell, S. Darvish, P. Kung and M. Razeghi
SPIE Conference, Jose, CA, Vol. 5359, pp. 434-- January 25, 2004 ...[Visit Journal]
We report AlGaN-based back-illuminated solar-blind p-i-n photodetectors with a record peak responsivity of 150 mA/W at 280 nm, corresponding to a high external quantum efficiency of 68%, increasing to 74% under 5 volts reverse bias. Through optimization of the p-AlGaN layer, we were able to remove the out-of-band negative photoresponse originating from the Schottky-like p-type metal contact, and hence significantly improve the degree of solar-blindness [reprint (PDF)]
 
2.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
2.  Review of III-Nitride Optoelectronic Materials for light Emission and Detection
M. Razeghi, A. Yasan, R. McClintock, K. Mayes, D. Shiell, S. Darvish, and P. Kung
Physica Status Solidi C S141 - S148-- September 10, 2004 ...[Visit Journal]
We review the significant achievements relating to optoelectronic devices based on III-nitrides at the center for quantum devices (CQD). Based on GaN/InGaN multiple-quantum well structures, we demonstrated blue laser diodes at a wavelength of 405 nm. This achievement was particularly significant at the time, because while no defect reduction technique was used, a fairly low threshold current density was achieved (3.8 kA/cm²). In the past few years, however, the interest has shifted towards shorter wavelength light emitters, i.e. ultraviolet LEDs and LDs. Lower crystalline quality and unsatisfactory doping levels of AlGaN compound semiconductors posed serious challenges en route to the realization of UV light emitters. However, steady progress in the growth of AlGaN and AlN epilayers made it possible to overcome some of the difficulties. To date, we have been able to demonstrate UV LEDs at wavelengths as short as 265 nm (corresponding to 45% Al in AlxGa1-xN) with optical output powers of over 5 mW. We have addressed the n-type AlGaN doping problem by using a Si-In co-doped scheme. We also employed high-quality AlGaN/AlN superlattice templates for the reduction of defects. We have also demonstrated 280 nm UV LEDs with output powers of over 6 mW and external quantum efficiencies of over 0.25%. Despite all the success in the realization of short-wavelength UV LEDs, UV laser diodes at these short wavelengths are yet to be realized. The main difficulties are the low material quality, high device resistance leading to excessive heating of the device, realization of smooth cavity mirrors, and issues related to the cracking of the material. We have also demonstrated different types of photodetectors in the UV range of the spectrum: photoconductors, MSM photodetector, Schottky barrier photodetectors, and p-i-n photodiodes to name a few. The most promising type of photodetector for realization of UV imaging focal plane arrays is the p-i-n photodiode. Realization of high-efficiency AlGaN-based p-i-n photodiodes becomes more difficult when considering the need for the collection of the light from the backside of the substrate. However, similar to our back-emission UV LED structure, we have demonstrated back-illuminated p-i-n solar-blind photodiodes with external quantum efficiencies as high as 68% under no applied bias and 74% under -5 V of bias. [reprint (PDF)]
 
2.  AlGaN-based deep-ultraviolet 320 x 256 focal plane array
E. Cicek, Z. Vashaei, E.K. Huang, R. McClintock and M. Razeghi
OSA Optics Letters, Vol. 37, No. 5, p. 896-898-- March 1, 2012 ...[Visit Journal]
We report the synthesis, fabrication, and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1−xN–based detectors, fully realized within our research laboratory. We implemented a pulse atomic layer deposition technique for the metalorganic chemical vapor deposition growth of thick, high-quality, crack-free, high Al composition AlxGa1−xN layers. The FPA is hybridized to a matching ISC 9809 readout integrated circuit and operated in a SE-IR camera system. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower, and falling off three orders of magnitude by ∼285 nm. By developing an opaque masking technology, the visible response of the ROIC is significantly reduced; thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allows the FPA to achieve high external quantum efficiency (EQE); at 254 nm, average pixels showed unbiased peak responsivity of 75 mA∕W, which corresponds to an EQE of ∼37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)]
 
2.  High Temperature Continuous Wave Operation of ~8 μm Quantum Cascade Lasers
S. Slivken, A. Matlis, C. Jelen, A. Rybaltowski, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (2)-- January 11, 1999 ...[Visit Journal]
We report single-mode continuous-wave operation of a λ∼8 μm quantum cascade laser at 140 K. The threshold current density is 4.2 kA/cm² at 300 K in pulsed mode and 2.5 kA/cm² at 140 K in continuous wave for 2 mm long index-guided laser cavities of 20 μm width. Wide stripe (W ∼ 100 μm), index-guided lasers from the same wafer in pulsed operation demonstrate an average T0 of 210 K with other wafers demonstrating a T0 as high as 290 K for temperatures from 80 to 300 K. This improvement in high-temperature performance is a direct result of three factors: excellent material quality, a low-loss waveguide design, and a low-leakage index-guided laser geometry. [reprint (PDF)]
 
2.  Optical Absorption and Photoresponse in fully Quaternary p-type Quantum Well Detectors
J. Hoff, C. Jelen, S. Slivken, G.J. Brown, and M. Razeghi
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996 ...[Visit Journal]
Acceptor doped, non-strained aluminum-free Quantum Well Intersubband Photodetectors lattice matched to GaAs with Ga0.79In0.21As0.59P0.41 wells and Ga0.62In0.38As0.22P0.78 barriers have been demonstrated on semi-insulating GaAs substrates. These devices which operate at normal incidence demonstrate a unique spectral response which extends from approximately 2 μm up to 10 μm. To explain such a broad spectral shape, a detailed theoretical analysis based on the 8 x 8 Kane Hamiltonian was necessary to probe all aspect of optical absorption. The results of this analysis revealed that spectral shape results from the influence of the Spin Split-off band on the band structure and the optical matrix. [reprint (PDF)]
 
2.  Interface-induced Suppression of the Auger Recombination in Type-II InAs/GaSb Superlattices
H. Mohseni, V.I. Litvinov and M. Razeghi
Physical Review B 58 (23)-- December 15, 1998 ...[Visit Journal]
The temperature dependence of the nonequilibrium carriers lifetime has been deduced from the measurement of the photocurrent response in InAs/GaSb superlattices. Based on the temperature dependence of the responsivity and modeling of the transport parameters we have found that the carrier lifetime weakly depends on temperature in the high-temperature region. This indicates the temperature dependence of the Auger recombination rate with no threshold that differs it from that in the bulk material and can be attributed to the interface-induced suppression of the Auger recombination in thin quantum wells. [reprint (PDF)]
 
2.  InGaAs/InGaP Quantum-Dot Photodetector with a High Detectivity
H. Lim, S. Tsao, M. Taguchi, W. Zhang, A. Quivy and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270N-- January 23, 2006 ...[Visit Journal]
Quantum-dot infrared photodetectors (QDIPs) have recently been considered as strong candidates for numerous applications such as night vision, space communication, gas analysis and medical diagnosis involving middle and long wavelength infrared (MWIR and LWIR respectively) operation. This is due to their unique properties arising from their 3-dimensional confinement potential that provides a discrete density of states. They are expected to outperform quantum-well infrared photodetectors (QWIPs) as a consequence of their natural sensitivity to normal incident radiation, their higher responsivity and their higher-temperature operation. So far, most of the QDIPs reported in the literature were based on the InAs/GaAs system and were grown by molecular beam epitaxy (MBE). Here, we report on the growth of a high detectivity InGaAs/InGaP QDIP grown on a GaAs substrate using low-pressure metalorganic chemical vapor deposition (MOCVD). [reprint (PDF)]
 

Page 5 of 27:  Prev << 1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  >> Next  (672 Items)