Page 6 of 24:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  >> Next  (581 Items)

3.  Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors
E.K. Huang, A. Haddadi, G. Chen, A.M. Hoang, and M. Razeghi
Optics Letters, Vol. 38, no. 1, p. 22-24-- January 1, 2013 ...[Visit Journal]
A versatile dual-band detector capable of active and passive use is demonstrated using short-wave (SW) and midwave(MW) IR type-II superlattice photodiodes. A bilayer etch-stop scheme is introduced for back-side-illuminated detectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ~1 × 10-5 A/cm² for the ∼4.2 μm cutoff MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F∕2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using tint  30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. Excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)]
 
3.  Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics & Technology Volume 113, March 2021, 103641 ...[Visit Journal]
In this study, a comprehensive analysis of the n-p-n infrared heterojunction phototransistors (HPTs)based on Type-II superlattices has been demonstrated. Different kinds of Type-II superlattices were carefully chosen for the emitter, base, and collector to improve the optical performance. The effects of different device parameters include emitter doping concentration, base doping concentration, base thickness and energy bandgap difference between emitter and base on the optical gain of the HPTs have been investigated. By scaling the base thickness to 20 nm, the HPT exhibits an optical gain of 345.3 at 1.6 μm at room temperature. For a 10 μm diameter HPT device, a −3 dB cut-off frequency of 5.1 GHz was achieved under 20 V at 150 K. [reprint (PDF)]
 
3.  Broadband, Tunable, and Monolithic Quantum Cascade Lasers
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken.
Semiconductor lasers; (140.3600) Lasers, tunable-- May 19, 2017 ...[Visit Journal]
This article describes the state of research and recent developments related to broadband quantum cascade lasers. Monolithic tuning and system development is also discussed. [reprint (PDF)]
 
3.  High power, continuous wave, room temperature operation of λ ~ 3.4 μm and λ ~ 3.55 μm InP-based quantum cascade lasers
N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 212104-1-- May 21, 2012 ...[Visit Journal]
We report two highly strain-balanced InP-based AlInAs/GaInAs quantum cascade lasers emitting near 3.39 and 3.56 . A pulsed threshold current density of only 1.1 kA/cm² has been achieved at room temperature for both lasers with characteristic temperatures (T0) of 166  K and 152  K, respectively. The slope efficiency is also relatively temperature insensitive with characteristic temperatures (T1) of 116 K and 191  K, respectively. Continuous wave powers of 504 mW and 576 mW are obtained at room temperature, respectively. This was accomplished without buried ridge processing. [reprint (PDF)]
 
3.  High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 µm
Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow and V. Nathan
Applied Physics Letters, 86 (9)-- February 28, 2005 ...[Visit Journal]
We report the most recent result in the area of type-II InAs/GaSb superlattice photodiodes that have a cutoff wavelength around 7 µm at 77 K. Superlattice with a period of 40 Å lattice matched to GaSb was realized using GaxIn1–x type interface engineering technique. Compared with significantly longer period superlattices, we have reduced the dark current density under reverse bias dramatically. For a 3 µm thick structure, using sulfide-based passivation, the dark current density reached 2.6×10–5 A/cm2 at –3 V reverse bias at 77 K. At this temperature the photodiodes have R0A of 9300 Ω·cm2 and a thermally limited zero bias detectivity of 1×1012 cm·Hz½/W. The 90%–10% cutoff energy width was only 16.5 meV. The devices did not show significant dark current change at 77 K after three months storage in the atmosphere. [reprint (PDF)]
 
3.  High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends
M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park
Advanced Research Workshop on Semiconductor Nanostructures, Queenstown, New Zealand; Proceedings -- February 5, 2003 ...[Visit Journal]
In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)]
 
3.  Defects in Organometallic Vapor-Phase Epitaxy-Grown GaInP Layers
Feng S.L., Bourgoin J.C., Omnes F., and Razeghi M.
Applied Physics Letters 59 (8), p. 941-- May 28, 1991 ...[Visit Journal]
Non-intentionally doped metalorganic vapor‐phase epitaxy Ga1−x InxP layers, having an alloy composition (x = 0.49) corresponding to a lattice matched to GaAs, grown by metalorganic chemical vapor deposition, have been studied by capacitance‐voltage and deep-level transient spectroscopy techniques. They are found to exhibit a free‐carrier concentration at room temperature of the order of 1015 cm−3. Two electron traps have been detected. The first one, at 75 meV below the conduction band, is in small concentration (∼1013 cm−3) while the other, at about 0.9 eV and emitting electrons above room temperature, has a concentration in the range 1014–1015 cm−3. [reprint (PDF)]
 
3.  Recent Advances in InAs/GaSb Superlattices for Very Long Wavelength Infrared Detection
G.J. Brown, F. Szmulowicz, K. Mahalingam, S. Houston, Y. Wei, A. Gin and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4999, pp. 457-- January 27, 2003 ...[Visit Journal]
New infrared (IR) detector materials with high sensitivity, multi-spectral capability, improved uniformity and lower manufacturing costs are required for numerous long and very long wavelength infrared imaging applications. One materials system has shown great theoretical and, more recently, experimental promise for these applications: InAs/InxGa1-xSb type-II superlattices. In the past few years, excellent results have been obtained on photoconductive and photodiode samples designed for infrared detection beyond 15 microns. The infrared properties of various compositions and designs of these type-II superlattices have been studied. The infrared photoresponse spectra are combined with quantum mechanical modeling of predicted absorption spectra to provide insight into the underlying physics behind the quantum sensing in these materials. Results for superlattice photodiodes with cut-off wavelengths as long as 25 microns are presented. [reprint (PDF)]
 
3.  High-Average-Power, High-Duty-Cycle (~6 μm) Quantum Cascade Lasers
S. Slivken, A. Evans, J. David, and M. Razeghi
Virtual Journal of Nanoscience & Technology 9-- December 9, 2002 ...[Visit Journal][reprint (PDF)]
 
3.  Substrate emission quantum cascade ring lasers with room temperature continuous wave operation
Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 82680N-- January 22, 2012 ...[Visit Journal]
We demonstrate room temperature, continuous wave operation of quantum cascade ring lasers around 5 μm with single mode operation up to 0.51 W output power. Single mode operation persists up to 0.4 W. Light is coupled out of the ring cavity through the substrate with a second order distributed feedback grating. The substrate emission scheme allows for epilayer-down bonding, which leads to room temperature continuous wave operation. The far field analysis indicates that the device operates in a high order mode. [reprint (PDF)]
 
3.  Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
F. Wang, S. Slivken, D. H. Wu, Q. Y. Lu, and M. Razeghi
AIP Advances 10, 055120-- May 19, 2020 ...[Visit Journal]
In this paper, we report a post-polishing technique to achieve nearly complete surface planarization for the buried ridge regrowth processing of quantum cascade lasers. The planarized device geometry improves the thermal conduction and reliability and, most importantly, enhances the power and efficiency in continuous wave operation. With this technique, we demonstrate a high continuous wave wall-plug efficiency of an InP-based quantum cascade laser reaching ∼41% with an output power of ∼12 W from a single facet operating at liquid nitrogen temperature. At room temperature, the continuous wave output power exceeds the previous record, reaching ∼5.6 W. [reprint (PDF)]
 
3.  High Power 280 nm AlGaN Light Emitting Diodes Based on an Asymmetric Single Quantum Well
K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, and M. Razeghi
Applied Physics Letters, 84 (7)-- February 16, 2004 ...[Visit Journal]
We demonstrate high-power AlGaN-based ultraviolet light-emitting diodes grown on sapphire with an emission wavelength of 280 nm using an asymmetric single-quantum-well active layer configuration on top of a high-quality AlGaN/AlN template layer. An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm×300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)]
 
3.  Generalized k·p perturbation theory for atomic-scale superlattices
H. Yi and M. Razeghi
Physical Review B 56 (7)-- August 15, 1997 ...[Visit Journal]
We present a generalized k⋅p perturbation method that is applicable for atomic-scale superlattices. The present model is in good quantitative agreement with full band theories with local-density approximation, and approaches results of the conventional k⋅p perturbation method (i.e., Kane’s Hamiltonian) with the envelope function approximation for superlattices with large periods. The indirect band gap of AlAs/GaAs superlattices with short periods observed in experiments is explained using this method. [reprint (PDF)]
 
3.  Recent advances in antimonide-based gap-engineered Type-II superlattices material system for 2 and 3 colors infrared imagers
Manijeh. Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, and Thomas Yang
Proceedings of SPIE 10177, Infrared Technology and Applications XLIII, 1017705-- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  Recent advances in InAs/InAs1- xSbx/AlAs1-xSbx gap-engineered Type-II superlattice-based photodetectors
Manijeh Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang
Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705 -- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  High performance quantum dot-quantum well infrared focal plane arrays
S. Tsao, A. Myzaferi, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7605, p. 76050J-1-- January 27, 2010 ...[Visit Journal]
Quantum dot (QD) devices are a promising technology for high operating temperature detectors. We have studied InAs QDs embedded in an InGaAs/InAlAs quantum well structure on InP substrate for middle wavelength infrared detectors and focal plane arrays (FPAs). This combined dot-well structure has weak dot confinement of carriers, and as a result, the device behavior differs significantly from that in more common dot systems with stronger confinement. We report on our studies of the energy levels in the QDWIP devices and on QD-based detectors operating at high temperature with D* over 1010 cm·Hz½/W at 150 K operating temperature and high quantum efficiency over 50%. FPAs have been demonstrated operating at up to 200 K. We also studied two methods of adapting the QDWIP device to better accommodate FPA readout circuit limitations. [reprint (PDF)]
 
3.  Long-Wavelength Infrared Photodetectors Based on InSbBi Grown on GaAs Substrates
J.J. Lee, J.D. Kim, and M. Razeghi
Applied Physics Letters 71 (16)-- October 20, 1997 ...[Visit Journal]
We demonstrate the operation of InSbBi infrared photoconductive detectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The fabricated photodetector showed a cutoff wavelength of 7.7 μm at 77 K. The responsivity of the InSbBi photodetector at 7 μm was about 3.2 V/W at 77 K. The corresponding Johnson-noise limited detectivity was 4.7×108  cm· Hz½/W. The carrier lifetime was estimated to be about 86 ns from the voltage-dependent responsivity measurements. [reprint (PDF)]
 
3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Dark current reduction in microjunction-based double electron barrier type-II InAs/InAsSb superlattice long-wavelength infrared photodetectors
Romain Chevallier, Abbas Haddadi, & Manijeh Razeghi
Scientific Reports 7, Article number: 12617-- October 3, 2017 ...[Visit Journal]
Microjunction InAs/InAsSb type-II superlattice-based long-wavelength infrared photodetectors with reduced dark current density were demonstrated. A double electron barrier design was employed to reduce both bulk and surface dark currents. The photodetectors exhibited low surface leakage after passivation with SiO2, allowing the use of very small size features without degradation of the dark current. Fabricating microjunction photodetectors (25 × 25 µm² diodes with 10 × 10 µm² microjunctions) in combination with the double electron barrier design results in a dark current density of 6.3 × 10−6 A/cm² at 77 K. The device has an 8 µm cut-off wavelength at 77 K and exhibits a quantum efficiency of 31% for a 2 µm-thick absorption region, which results in a specific detectivity value of 1.2 × 1012 cm·Hz½/W. [reprint (PDF)]
 
3.  Type-II superlattice-based heterojunction phototransistors for high speed applications
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics and Technology 108, 1033502-- May 2, 2020 ...[Visit Journal]
In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz. [reprint (PDF)]
 
3.  High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
A. Haddadi, X.V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A.M. Hoang, and M. Razeghi
Applied Physics Letters 107 , 141104-- October 5, 2015 ...[Visit Journal]
A high-performance short-wavelength infrared n-i-p photodiode based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices on GaSb substrate has been demonstrated. The device is designed to have a 50% cut-off wavelength of ~1.8μm at 300K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.47 A/W at 1.6μm, corresponding to a quantum efficiency of 37% at zero bias under front-side illumination, without any anti-reflection coating. With an R×A of 285 Ω·cm² and a dark current density of 9.6×10-5 A/cm² under −50mV applied bias at 300 K, the photodiode exhibited a specific detectivity of 6.45×1010 cm·Hz½/W. At 200 K, the photodiode exhibited a dark current density of 1.3×10-8 A/cm² and a quantum efficiency of 36%, resulting in a detectivity of 5.66×1012 cm·Hz½/W. [reprint (PDF)]
 
3.  Growth and characterization of long wavelength infrared Type-II superlattice Photodiodes on a 3
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79451O-- January 23, 2011 ...[Visit Journal]
One of the great advantages of Type-II InAs/GaSb superlattice over other competing technologies for the third generation infrared imagers is the potential to have excellent uniformity across a large area as the electronic structure of the material is controlled by the layer thicknesses, not by the composition of the materials. This can economize the material growth, reduce the fabrication cost, and especially allow the realization of large format imagers. In this talk, we report the molecular beam epitaxial growth of Type-II superlattices on a 3-inch GaSb substrate for long wavelength infrared detection. The material exhibits excellent structural, optical and electrical uniformity via AFM, Xray, quantum efficiency and I-V measurements. At 77K, 11μm cutoff photodiodes exhibit more than 45% quantum efficiency, and a dark current density of 1.0x10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6 x 1011 cm·Hz1/2/W. [reprint (PDF)]
 
3.  High Frequency Extended Short-Wavelength Infrared Heterojunction Photodetectors Based on InAs/GaSb/AlSb Type-II Superlattices
Romain Chevallier, Abbas Haddadi, Ryan McClintock, Arash Dehzangi , Victor Lopez-Dominguez, Pedram Khalili Amiri, Manijeh Razeghi
IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 54, NO. 6-- December 1, 2018 ...[Visit Journal]
InAs/GaSb/AlSb type-II superlattice-based photodetectors, with 50% cut-off wavelength of 2.1 µm and a −3 dB cut-off frequency of 4.8 GHz, are demonstrated, for 10 µm diameter circular mesas under 15 V applied reverse bias. A study of the cut-off frequency with applied bias and mesa size was performed to evaluate some of the limiting factors of photodetectors high frequency performance. [reprint (PDF)]
 
3.  High-Power CW Mid-IR Quantum Cascade Lasers
J.R. Meyer, W.W. Bewley, J.R. Lindle, I. Vurgaftman, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
SPIE Conference, Jose, CA, -- January 22, 2005 ...[Visit Journal]
We report the cw operation of quantum cascade lasers that do not require cryogenic cooling and emit at λ = 4.7-6.2 µm. At 200 K, more than 1 W of output power is obtained from 12-µm-wide stripes, with a wall-plug efficiency (ηwall) near 10%. Room-temperature cw operation has also been demonstrated, with a maximum output power of 640 mW (ηwall = 4.5%) at 6 µm and 260 mW (ηwall = 2.3%) at 4.8 µm. Far-field characterization indicates that whereas the beam quality remains close to the diffraction limit in all of the tested lasers, in the devices emitting at 6.2 µm the beam tends to steer by as much as 5-10° degrees in either direction with varying temperature and pump current. [reprint (PDF)]
 
3.  Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi
Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021) ...[Visit Journal]
We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. [reprint (PDF)]
 

Page 6 of 24:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  >> Next  (581 Items)