| About the CQD | | News | | Conferences | | Publications | | Books | | Research | | People | | History | | Patents | | Contact | Channel | |
Page 6 of 6: Prev << 1 2 3 4 5 6 (129 Items)
| 1. | High-performance, continuous-wave operation of λ ~ 4.6 μm quantum-cascade lasers above room temperature J.S. Yu, S. Slivken, A. Evans and M. Razeghi IEEE Journal of Quantum Electronics, Vol. 44, No. 8, p. 747-754-- August 1, 2008 ...[Visit Journal] We report the high-performance continuous-wave (CW) operation of 10-μm-wide quantum-cascade lasers (QCLs) emitting at λ ~ 4.6 μm, based on the GaInAs–AlInAs material without regrowth, in epilayer-up and -down bonding configurations. The operational characteristics of QCLs such as the maximum average power, peak output power, CW output power, and maximum CW operating temperature are investigated, depending on cavity length. Also, important device parameters, i.e., the waveguide loss, the transparency current density, the modal gain, and the internal quantum efficiency, are calculated from length-dependent results. For a high-reflectivity (HR) coated 4-mm-long cavity with epilayer-up bonding, the highest maximum average output power of 633 mW is measured at 65% duty cycle, with 469 mW still observed at 100%. The laser exhibits the maximum wall-plug efficiencies of 8.6% and 3.1% at 298 K, in pulsed and CW operatons, respectively. From 298 to 393 K, the temperature dependent threshold current density in pulsed operation shows a high characteristic temperature of 200 K. The use of an epilayer-down bonding further improves the device performance. A CW output power of 685 mW at 288 K is achieved for the 4-micron-long cavity. At 298 K, the output power of 590 mW, threshold current density of 1.52 kA / cm2, and maximum wall-plug efficiency of 3.73% are obtained under CW mode, operating up to 363 K (90 °C). For HR coated 3-micron-long cavities, laser characteristics across the same processed wafer show a good uniformity across the area of 2 x 1 cm2, giving similar output powers, threshold current densities, and emission wavelengths. The CW beam full-width at half-maximum of far-field patterns are 25 degree and 46 degree for the parallel and the perpendicular directions, respectively. [reprint (PDF)] |
| 1. | InAs quantum dot infrared photodetectors on InP by MOCVD W. Zhang, H. Lim, M. Taguchi, A. Quivy and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 61270M -- January 23, 2006 ...[Visit Journal] We report our recent results of InAs quantum dots grown on InP substrate by low-pressure metalorganic chemical vapor deposition (MOCVD) for the application of quantum dot infrared photodetector (QDIP). We have previously demonstrated the first InP-based QDIP with a peak detection wavelength at 6.4 µm and a detectivity of 1010 cm·Hz½/W at 77K. Here we show our recent work toward shifting the detection wavelength to the 3-5 µm middlewavelength infrared (MWIR) range. The dependence of the quantum dot on the growth conditions is studied by atomic force microscopy, photoluminescence and Fourier transform infrared spectroscopy. Possible ways to increase the quantum efficiency of QDIPs are discussed. [reprint (PDF)] |
| 1. | High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi Applied Physics Letters, 89 (9)-- August 28, 2006 ...[Visit Journal] Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. [reprint (PDF)] |
| 1. | Sb-based infrared materials and photodetectors for the near room temperature applications J.D. Kim, E. Michel, H. Mohseni, J. Wojkowski, J.J. Lee and M. Razeghi SPIE Conference, San Jose, CA, Vol. 2999, pp. 55-- February 12, 1997 ...[Visit Journal] We report on the growth of InSb, InAsSb, and InTlSb alloys for infrared photodetector applications. The fabrication and characterization of photodetectors based on these materials are also reported. Both photoconductive and photovoltaic devices are investigated. The materials and detector structures were grown on (100) and (111)B semi-insulating GaAs and GaAs coated Si substrates by low pressure metalorganic chemical vapor deposition and solid source molecular beam epitaxy. Photoconductive detectors fabricated from InAsSb and InTlSb have been operated in the temperature range from 77 K to 300 K. The material parameters for photovoltaic device structures have been optimized through theoretical calculations based on fundamental mechanisms. InSb p-i-n photodiodes with 77 K peak responsivities approximately 103 V/W were grown on Si and (111) GaAs substrates. An InAsSb photovoltaic detector with a composition of x equals 0.85 showed photoresponse up to 13 micrometers at 300 K with a peak responsivity of 9.13 X 10-2 V/W at 8 micrometers . The RoA product of InAsSb detectors has been theoretically and experimentally analyzed. [reprint (PDF)] |
Page 6 of 6: Prev << 1 2 3 4 5 6 (129 Items)
|