Page 7 of 9:  Prev << 1 2 3 4 5 6 7  8 9  >> Next  (213 Items)

1.  Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers
M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken
SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal]
We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW. The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)]
 
1.  Type-II superlattice-based extended short-wavelength infrared focal plane array with an AlAsSb/GaSb superlattice etch-stop layer to allow near-visible light detection
Romain Chevallier, Arash Dehzangi, Abbas Haddadi, and Manijeh Razeghi
Optics Letters Vol. 42, Iss. 21, pp. 4299-4302-- October 17, 2017 ...[Visit Journal]
A versatile infrared imager capable of imaging the near-visible to the extended short-wavelength infrared (e-SWIR) is demonstrated using e-SWIR InAs/GaSb/AlSb type-II superlattice-based photodiodes. A bi-layer etch-stop scheme consisting of bulk InAs0.91Sb0.09 and AlAs0.1Sb0.9/GaSb superlattice layers is introduced for substrate removal from the hybridized back-side illuminated photodetectors. The implementation of this new technique on an e-SWIR focal plane array results in a significant enhancement in the external quantum efficiency (QE) in the 1.8–0.8μm spectral region, while maintaining a high QE at wavelengths longer than 1.8μm. Test pixels exhibit 100% cutoff wavelengths of ∼2.1 and ∼2.25μm at 150 and 300K, respectively. They achieve saturated QE values of 56% and 68% at 150 and 300K, respectively, under back-side illumination and without any anti-reflection coating. At 150K, the photodetectors (27μm×27μm area) exhibit a dark current density of 4.7×10−7  A/cm2 under a −50  mV applied bias providing a specific detectivity of 1.77×1012  cm·Hz1/2/W. At 300K, the dark current density reaches 6.6×10−2  A/cm2 under −50 mV bias, providing a specific detectivity of 5.17×109  cm·Hz1/2/W. [reprint (PDF)]
 
1.  InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition
B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (23)-- June 7, 1999 ...[Visit Journal]
We report high power mid-infrared electrical injection operation of laser diodes based on InAsSb/InAsP strained-layer superlattices grown on InAs substrate by metal-organic chemical vapor deposition. The broad-area laser diodes with 100 μm aperture and 1800 μm cavity length demonstrate peak output powers of 546 and 94 mW in pulsed and cw operation respectively at 100 K with a threshold current density as low as 100 A/cm². [reprint (PDF)]
 
1.  High Performance Type-II InAs/GaSb Superlattice Photodiodes
H. Mohseni, Y. Wei, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 22, 2001 ...[Visit Journal]
We report on the demonstration of high performance p-i-n photodiodes based on Type-II InAs/GaSb superlattices operating in the very long wavelength infrared (VLWIR) range at 80 K. Material is grown by molecular beam epitaxy on GaSb substrates with excellent crystal quality as evidenced by x-ray diffraction and atomic force microscopy. The processed devices with a 50% cutoff wavelength of λc equals 22 μm show a peak current responsivity about 5.5 A/W at 80 K. The use of binary layers in the superlattice has significantly enhanced the uniformity and reproducibility of the energy gap. The 90% to 10% cut-off energy width of these devices is on the order of 2 kT which is about four times smaller compared to the devices based on InAs/Ga1-xInxSb superlattices. Similar photovoltaic devices with cut-off wavelengths up to 25 μm have been measured at 80 K. Our experimental results shows excellent uniformity over a three inch wafer area, indicating the possibility of VLWIR focal plane arrays based on Type-II superlattices. [reprint (PDF)]
 
1.  Short Wavelength (λ~ 4.3 μm) High-Performance Continuous-Wave Quantum-Cascade Lasers
J.S. Yu, A. Evans, S. Slivken, S.R. Darvish, and M. Razeghi
IEEE Photonics Technology Letters, 17 (6)-- June 1, 2005 ...[Visit Journal]
We report continuous-wave (CW) operation of a 4.3-μm quantum-cascade laser from 80 K to 313 K. For a high-reflectivity-coated 11-μm-wide and 4-mm-long laser, CW output powers of 1.34 W at 80 K and 26 mW at 313 K are achieved. At 298 K, the CW threshold current density of 1.5 kA/cm2 is observed with a CW output power of 166 mW and maximum wall-plug efficiency of 1.47%. The CW emission wavelength varies from 4.15 μm at 80 K to 4.34 μm at 298 K, corresponding to a temperature-tuning rate of 0.87 nm/K. The beam full-width at half-maximum values for the parallel and the perpendicular far-field patterns are 26° and 49° in CW mode, respectively. [reprint (PDF)]
 
1.  Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer
Akhil Rajan, David J Rogers, Cuong Ton-That, Liangchen Zhu, Matthew R Phillips, Suresh Sundaram, Simon Gautier, Tarik Moudakir, Youssef El-Gmili, Abdallah Ougazzaden, Vinod E Sandana, Ferechteh H Teherani, Philippe Bove, Kevin A Prior, Zakaria Djebbour, Ryan McClintock and Manijeh Razeghi
Journal of Physics D: Applied Physics, Volume 49, Number 31 -- July 15, 2016 ...[Visit Journal]
Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling. [reprint (PDF)]
 
1.  Multiple-band, Single-mode, High-power, Phase-locked, Mid-infrared Quantum Cascade Laser Arrays
Manijeh Razeghi, Wenjia Zhou, Quanyong Lu, Donghai Wu, and Steven Slivken
Imaging and Applied Optics 2018, JTh1A.2-- September 15, 2018 ...[Visit Journal]
Single-mode, 16-channel, phase-locked laser arrays based on quantum cascade laser technology are demonstrated at multiple spectral bands across the mid-infrared spectrum region. High peak output power of 50W is achieved around the long-wavelength band of 7.7µm, while a side mode suppression ratio over 25dB is obtained. Far field distribution measurement result indicates a uniform phase distribution across the array output. [reprint (PDF)]
 
1.  High power asymmetrical InAsSb/InAsSbP/AlAsSb double heterostructure lasers emitting at 3.4 μm
D. Wu, B. Lane, H. Mohseni, J. Diaz and M. Razeghi
Applied Physics Letters 74 (9)-- March 1, 1999 ...[Visit Journal]
Midinfrared lasers with an asymmetrical InPAsSb/InAsSb/AlAsSb double heterostructure are reported. Using the asymmetrical double heterostructure, p- and n-cladding layers are separately optimized; high energy-gap AlAsSb (Eg ≈ 1.5 eV) for the p-type cladding layer to reduce the leakage current, and thus to increase To, and low energy-gap InPAsSb (Eg ≈ 0.5 eV) for the n-cladding layer to have low turn-on voltage. 100-μm-width broad-area lasers with 1000 μm cavity length exhibited peak output powers of 1.88 W in pulse and 350 mW in continuous wave modes per two facets at T=80 K with To of 54 K and turn-on voltage of 0.36 V. Maximum peak output powers up to 6.7 W were obtained from a laser bar of total aperture of 400 μm width and cavity length of 1000 μm, with a differential efficiency of 34% and far-field beam divergence narrower than 40° at 80 K. [reprint (PDF)]
 
1.  Long Wavelength Type-II Photodiodes Operating at Room Temperature
H. Mohseni and M. Razeghi
IEEE Photonics Technology Letters 13 (5)-- May 1, 2001 ...[Visit Journal]
The operation of uncooled InAs-GaSb superlattice photodiodes with a cutoff wavelength of λc=8 μm and a peak detectivity of 1.2 × 108 cm·Hz½/W at zero bias is demonstrated. The detectivity is similar to the best uncooled HgCdTe detectors and microbolometers. However, the R0A product is more than two orders of magnitude higher than HgCdTe and the device is more than four orders of magnitude faster than microbolometers. These features combined with their low 1/f noise and high uniformity make these type-II photodiodes an excellent choice for uncooled high-speed IR imaging arrays [reprint (PDF)]
 
1.  High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron
B. Gokden, S. Slivken and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal]
Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)]
 
1.  High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm
J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi
Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal]
The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)]
 
1.  High power broad area quantum cascade lasers
Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi
Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal]
Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)]
 
1.  Compressively-strained multiple quantum well InAsSb lasers emitting at 3.6 μm grown by metal-organic chemical vapor deposition
B. Lane, D. Wu, A. Rybaltowski, H. Yi, J. Diaz, and M. Razeghi
Applied Physics Letters 70 (4)-- January 27, 1997 ...[Visit Journal]
A compressively strained InAsSb/InAs multiple quantum-well (MQW) structure was grown by low-pressure metal-organic chemical vapor deposition. Maximum output power (from two facets) up to 1 W with differential efficiency about 70% was obtained from a MQW laser with stripe width of 100 μm and cavity length of 700 μm for emitting wavelength of 3.65 μm at 90 K in pulse mode operation. About 2 times lower threshold current density was obtained from the MQW lasers for a temperature range of 90 to 140 K compared to the double heterostructure lasers grown on the same growth conditions. [reprint (PDF)]
 
1.  Phase-locked, high power, mid-infrared quantum cascade laser array
W. Zhou, S. Slivken, and M. Razeghi
Applied Physics Letters 112, 181106-- May 4, 2018 ...[Visit Journal]
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array. [reprint (PDF)]
 
1.  III-Nitride photon counting avalanche photodiodes
R. McClintock, J.L. Pau, K. Minder, C. Bayram and M. Razeghi
SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 69000N-1-11.-- February 1, 2008 ...[Visit Journal]
In order for solar and visible blind III-Nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avalanche photodetectors (APDs), and present the state-of-the-art results on photon counting based on the Geiger mode operation of GaN APDs. The devices are fabricated on transparent AlN templates specifically for back-illumination in order to enhance hole-initiated multiplication. The spectral response and Geiger-mode photon counting performance are analyzed under low photon fluxes, with single photon detection capabilities being demonstrated in smaller devices. Other major technical issues associated with the realization of high-quality visible-blind APDs and Geiger mode APDs are also discussed in detail and solutions to the major problems are described where available. Finally, future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 
1.  Thermal Conductivity of InAs/GaSb Type II Superlattice
C. Zhou, B.M. Nguyen, M. Razeghi and M. Grayson
Journal of Electronic Materials, Vol. 41, No. 9, p. 2322-2325-- August 1, 2012 ...[Visit Journal]
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice(T2SL) is measured from 13 K to 300 K using the 3x method. Thermal conductivity is reduced by up to two orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1 W/m K to 8 W/m K may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL interband cascade lasers and highpower photodiodes. We describe a power-law approximation to model nonlinearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively. [reprint (PDF)]
 
1.  Type–II superlattices base visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor
Arash Dehzangi, Ryan McClintock, Abbas Haddadi, Donghai Wu, Romain Chevallier, Manijeh Razeghi
Scientific Reports volume 9, Article number: 5003 -- March 21, 2019 ...[Visit Journal]
Visible/extended short–wavelength infrared photodetectors with a bandstructure–engineered photo–generated carrier extractor based on type–II InAs/AlSb/GaSb superlattices have been demonstrated. The photodetectors are designed to have a 100% cut-off wavelength of ~2.4 μm at 300K, with sensitivity down to visible wavelengths. The photodetectors exhibit room–temperature (300K) peak responsivity of 0.6 A/W at ~1.7 μm, corresponding to a quantum efficiency of 43% at zero bias under front–side illumination, without any anti–reflection coating where the visible cut−on wavelength of the devices is <0.5 µm. With a dark current density of 5.3 × 10−4 A/cm² under −20 mV applied bias at 300K, the photodetectors exhibit a specific detectivity of 4.72 × 1010 cm·Hz½W-1. At 150K, the photodetectors exhibit a dark current density of 1.8 × 10−10 A/cm² and a quantum efficiency of 40%, resulting in a detectivity of 5.56 × 1013 cm·Hz½/W [reprint (PDF)]
 
1.  Development of Quantum Cascade Lasers for High Peak Output Power and Low Threshold Current Density
S. Slivken and M. Razeghi
Solid State Electronics 46-- January 1, 2002 ...[Visit Journal]
Design and material optimization are used to both decrease the threshold current density and increase the output power for quantum cascade lasers. Waveguides are designed to try and minimize free-carrier and surface-plasmon absorption. Excellent material characterization is also presented, showing excellent control over layer thickness, interface quality, and doping level. Experiments are done to both optimize the injector doping level and to maximize the output power from a single aperture. At 300 K, a threshold current density as low as 1.8 kA/cm² is reported, along with peak powers of approximately 2.5 W. Strain-balanced lasers are also demonstrated at λnot, vert, similar5 μm, exhibiting threshold current densities<300 A/cm² at 80 K. These values represent the state-of-the-art for mid-infrared lasers with λ>4 μm [reprint (PDF)]
 
1.  Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser
W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi
Journal of Applied Physics 98-- October 15, 2005 ...[Visit Journal]
We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. [reprint (PDF)]
 
1.  A Review of III-Nitride Research at the Center for Quantum Devices
M. Razeghi and R. McClintock
Journal of Crystal Growth, Vol. 311, No. 10-- May 1, 2009 ...[Visit Journal]
In this paper, we review the history of the Center for Quantum Devices’ (CQD) III-nitride research covering the past 15 years. We review early work developing III-nitride material growth. We then present a review of laser and light-emitting diode (LED) results covering everything from blue lasers to deep UV LEDs emitting at 250 nm. This is followed by a discussion of our UV photodetector research from early photoconductors all the way to current state of the art Geiger-mode UV single photon detectors. [reprint (PDF)]
 
1.  High-quality MOCVD-grown heteroepitaxial gallium oxide growth on III-nitrides enabled by AlOx interlayer
Junhee Lee, Lakshay Gautam, and Manijeh Razeghi
Junhee Lee, Manijeh RazeghiAppl. Phys. Lett. 123, 151902 (2023) https://doi.org/10.1063/5.0170383 ...[Visit Journal]
We report high-quality Ga2O3 grown on an AlGaN/AlN/Sapphire in a single growth run in the same Metal Organic Chemical Vapor Deposition reactor with an AlOx interlayer at the Ga2O3/AlGaN interface. AlOx interlayer was found to enable the growth of single crystalline Ga2O3 on AlGaN in spite of the high lattice mismatch between the two material systems. The resulting nitride/oxide heterogenous heterostructures showed superior material qualities, which were characterized by structural, electrical, and optical characterization techniques. In particular, a significant enhancement of the electron mobility of the nitride/oxide heterogenous heterostructure is reported when compared to the individual electron mobilities of the Ga2O3 epilayer on the sapphire substrate and the AlGaN/AlN heterostructure on the sapphire substrate. This enhanced mobility marks a significant step in realizing the next generation of power electronic devices and transistors. [reprint (PDF)]
 
1.  High speed type-II superlattice based photodetectors transferred on sapphire
Arash Dehzangi, Ryan McClintock, Donghai Wu, Jiakai Li, Stephen Johnson, Emily Dial and Manijeh Razeghi
Applied Physics Express, Volume 12, Number 11-- October 3, 2019 ...[Visit Journal]
We report the substrate transfer of InAs/GaSb/AlSb based type-II superlattice (T2SL) e-SWIR photodetector from native GaSb substrates to low loss sapphire substrate in order to enhance the frequency response of the device. We have demonstrated the damage-free transfer of T2SL-based thin-films to sapphire substrate using top–down processing and a chemical epilayer release technique. After transfer the −3 dB cut-off frequency increased from 6.4 GHz to 17.2 GHz, for 8 μm diameter circular mesas under -15 V applied bias. We also investigated the cut-off frequency verses applied bias and lateral scaling to assess the limitations for even higher frequency performance. Direct Link [reprint (PDF)]
 
1.  First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS
M. Razeghi, P.Y. Delaunay, B.M. Nguyen, A. Hood, D. Hoffman, R. McClintock, Y. Wei, E. Michel, V. Nathan and M. Tidrow
IEEE LEOS Newsletter 20 (5)-- October 1, 2006 ...[Visit Journal]
The concept of Type-II InAs/GaSb superlattice was first brought by Nobel Laureate L. Esaki, et al. in the 1970s. There had been few studies on this material system until two decades later when reasonable quality material growth was made possible using molecular beam epitaxy. With the addition of cracker cells for the group V sources and optimizations of material growth conditions, the superlattice quality become significantly improved and the detectors made of these superlattice materials can meet the demand in some practical field applications. Especially in the LWIR regime, it provides a very promising alternative to HgCdTe for better material stability and uniformity, etc. We have developed the empirical tight binding model (ETBM) for precise determination of the superlattice bandgap. [reprint (PDF)]
 
1.  Photonic crystal distributed feedback quantum cascade lasers with 12 W output power
Y. Bai, B. Gokden, S.R. Darvish, S. Slivken, and M. Razeghi
Applied Physics Letters, Vol. 95, No. 3-- July 20, 2009 ...[Visit Journal]
We demonstrate room temperature, high power, and diffraction limited operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting around 4.7 µm. PCDFB gratings with three distinctive periods are fabricated on the same wafer. Peak output power up to 12 W is demonstrated. Lasers with different periods show expected wavelength shifts according to the design. Dual mode spectra are attributed to a purer index coupling by putting the grating layer 100 nm away from the laser core. Single lobed diffraction limited far field profiles are observed. [reprint (PDF)]
 
1.  High-Power (~9 μm) Quantum Cascade Lasers
S. Slivken, Z. Huang, A. Evans, and M. Razeghi
Virtual Journal of Nanoscale Science and Technology 5 (22)-- June 3, 2002 ...[Visit Journal][reprint (PDF)]
 

Page 7 of 9:  Prev << 1 2 3 4 5 6 7  8 9  >> Next  (213 Items)