About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 7 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
2. | 8-13 μm InAsSb heterojunction photodiode operating at near room temperature J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal] p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)] |
2. | High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 89 (25)-- December 18, 2006 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | High-detectivity quantum-dot infrared photodetectors grown by metal-organic chemical-vapor deposition J. Szafraniec, S. Tsao, W. Zhang, H. Lim, M. Taguchi, A.A. Quivy, B. Movaghar and M. Razeghi Applied Physics Letters 88 (121102)-- March 20, 2006 ...[Visit Journal] A mid-wavelength infrared photodetector based on InGaAs quantum dots buried in an InGaP matrix
and deposited on a GaAs substrate was demonstrated. Its photoresponse at T=77 K was measured
to be around 4.7 μm with a cutoff at 5.5 μm. Due to the high peak responsivity of 1.2 A/W and low
dark-current noise of the device, a specific peak detectivity of 1.1 x 1012 cm·Hz½·W−1 was
achieved at −0.9 V bias [reprint (PDF)] |
2. | InAsSbP/InAsSb/InAs Laser Diodes λ = 3.2 μm) Grown by Low-Pressure Metalorganic Chemical Vapor Deposition J. Diaz, G. Lukas, D. Wu, S. Kim, M. Erdtmann, E. Kaas, and M. Razeghi Applied Physics Letters 70 (1)-- January 6, 1997 ...[Visit Journal] We report metal–organic chemical-vapor deposition-grown double heterostructure InAsSbP/InAsSb/InAs diode lasers emitting at 3.2 μm operating at temperatures up to 220 K with threshold current density of 40 A/cm² at 77 K and characteristic temperature up to 42 K. Output powers as high as 260 mW in pulse mode and 60 mW in continuous wave operation have been obtained from an uncoated 100 μm stripe-width broad-area laser at 77 K. Comparison with theory shows that there is no significant nonradiative recombination mechanism for these lasers at 77 K. [reprint (PDF)] |
2. | High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation D. H. Wu and M. Razeghi APL Materials 5, 035505-- March 21, 2017 ...[Visit Journal] We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64
μm
μm
. A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400
μm
μm
radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)] |
2. | Intersubband hole absorption in GaAs-GaInP Quantum Wells grown by Gas Source Molecular Beam Epitaxy J. Hoff, C. Jelen, S. Slivken, E. Michel, O. Duchemin, E. Bigan, and M. Razeghi with G. Brown and S.M. Hegde (Wright Laboratory) Applied Physics Letters 65 (9)-- August 29, 1994 ...[Visit Journal] P-doped GaAs‐GaInP quantum wells have been grown on GaAs substrate by gas source molecular beam epitaxy. Structural quality has been evidenced by x-ray diffraction. A narrow low-temperature photoluminescence full width at half‐maximum has been measured. Strong hole intersubband absorption has been observed at 9 μm, and its dependence on light polarization has been investigated. [reprint (PDF)] |
2. | Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application Guanxi Chen, Abbas Haddadi, Anh-Minh Hoang, Romain Chevallier, and Manijeh Razeghi Optics Letters Vol. 40, Iss. 1, pp. 29–32-- December 18, 2014 ...[Visit Journal] An InAs/GaSb type-II superlattice-based mid-wavelength infrared (MWIR) 320×256 unipolar focal plane array (FPA) using pMp architecture exhibited excellent infrared image from 81 to 150 K and ∼98% operability, which illustrated the possibility for high operation temperature application. At 150 K and −50 mV operation bias, the 27 μm pixels exhibited dark current density to be 1.2×10−5 A/cm², with 50% cutoff wavelength of 4.9 μm, quantum efficiency of 67% at peak responsivity (4.6 μm), and specific detectivity of 1.2×1012 Jones. At 90 K and below, the 27 μm pixels exhibited system limited dark current density, which is below 1×10−9 A/cm², and specific detectivity of 1.5×1014 Jones. From 81 to 100 K, the FPA showed ∼11 mK NEDT by using F/2.3 optics and a 9.69 ms integration time. [reprint (PDF)] |
2. | Minority electron unipolar photodetectors based on Type-II InAs/GaSb/AlSb superlattices for very long wavelength infrared detection B.M. Nguyen, S. Bogdanov, S. Abdollahi Pour, and M. Razeghi Applied Physics Letters, Vol. 95, No. 18, p. 183502-- November 2, 2009 ...[Visit Journal] We present a hybrid photodetector design that inherits the advantages of traditional photoconductive and photovoltaic devices. The structure consists of a barrier layer blocking the transport of majority holes in a p-type semiconductor, resulting in an electrical transport due to minority carriers with low current density. By using the M-structure superlattice as a barrier region, the band alignments can be experimentally controlled, allowing for the efficient extraction of the photosignal with less than 50 mV bias. At 77 K, a 14 µm cutoff detector exhibits a dark current 3.3 mA·cm−2, a photoresponsivity of 1.4 A/W, and the associated shot noise detectivity of 4×1010 Jones. [reprint (PDF)] |
2. | High Power, Continuous-Wave, Quantum Cascade Lasers for MWIR and LWIR Applications S. Slivken, A. Evans, J.S. Yu, S.R. Darvish and M. Razeghi SPIE Conference, San Jose, CA, Vol. 6127, pp. 612703-- January 23, 2006 ...[Visit Journal] Over the past several years, our group has endeavored to develop high power quantum cascade lasers for a variety of remote and high sensitivity infrared applications. The systematic optimization of laser performance has allowed for demonstration of high power, continuous-wave quantum cascade lasers operating above room temperature. Since 2002, the power levels for individual devices have jumped from 20 mW to 600 mW. Expanding on this development, we have able to demonstrate continuous wave operation at many wavelengths throughout the mid- and far-infrared spectral range, and have now achieved >100 mW output in the 4.0 to 9.5 µm range. [reprint (PDF)] |
2. | High power quantum cascade lasers M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S.R. Darvish New Journal of Physics (NJP), Volume 11, p. 125017-- December 1, 2009 ...[Visit Journal] We report the most recent state-of-art quantum cascade laser results at wavelengths around 4.8 and 10 μm. At 4.8 μm, a room temperature wall plug efficiency (WPE) of 22 and 15.5% are obtained in pulsed mode and continuous wave (cw) mode, respectively. Room temperature cw output power reaches 3.4 W. The same laser design is able to reach a WPE of 36% at 120 K in pulsed mode. At 10 μm, room temperature average power of 2.2 W and cw power of 0.62 W are obtained. We also explore lasers utilizing the photonic crystal distributed feedback mechanism, and we demonstrate up to 12 W peak power operation at three different wavelengths around 4.7 μm with a waveguide width of 100 μm and diffraction limited beam quality. [reprint (PDF)] |
2. | Recent Advances in LWIR Type-II InAs/GaSb Superlattice Photodetectors and Focal Plane Arrays at the Center for Quantum Devices M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, M.Z. Tidrow, and V. Nathan IEEE Proceedings, Vol. 97, No. 6, p. 1056-1066-- June 1, 2009 ...[Visit Journal] In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs, and imaging applications. They now appear to be a possible alternative to the state-of-the-art HgCdTe (MCT) technology in the long and very long wavelength infrared regimes. At the Center for Quantum Devices, we have successfully realized very high quantum efficiency, very high dynamic differential resistance R0A - product LWIR Type – II InAs/GaSb superlattice photodiodes with efficient surface passivation techniques. The demonstration of high quality LWIR Focal Plane Arrays that were 100 % fabricated in - house reaffirms the pioneer position of this university-based laboratory. [reprint (PDF)] |
2. | Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range H. Mohseni, E. Michel, J. Sandven, M. Razeghi, W. Mitchel, and G. Brown Applied Physics Letters 71 (10)-- September 8, 1997 ...[Visit Journal] In this letter we report the molecular beam epitaxial growth and characterization of InAs/GaSb superlattices grown on semi-insulating GaAs substrates for long wavelength infrared detectors. Photoconductive detectors fabricated from the superlattices showed photoresponse up to 12 µm and peak responsivity of 5.5 V/W with Johnson noise limited detectivity of 1.33 × 109 cm·Hz½/W at 10.3 µm at 78 K. [reprint (PDF)] |
2. | Band gap tunability of Type-II Antimonide-based superlattices M. Razeghi and B.M. Nguyen Physics Procedia, Vol. 3, Issue 2, p. 1207-1212 (14th International Conference on Narrow Gap Semiconductors and Systems NGSS-14, Sendai, Japan, July 13-17, 2009)-- January 31, 2010 ...[Visit Journal] Current state-of-the art infrared photon detectors based on bulk semiconductors such as InSb or HgCdTe are now relatively mature and have almost attained the theoretical limit of performance. It means, however, that the technology can not be expected to demonstrate revolutionary improvements, in terms of device performances. In contrasts, low dimensional quantum systems such as superlattices, quantum wells, quantum dots, are still the development stage, yet have shown comparable performance to the bulk detector family. Especially for the Type-II Antimony-based superlattices, recent years have seen significant improvements in material quality, structural design as well as fabrication techniques which lift the performance of Type-II superlattice photodetectors to a new level.
In this talk, we will discuss the advantages of Type-II-superlattices, from the physical nature of the material to the practical realisms. We will demonstrate the flexibility in controlling the energy gap and their overall band alignment for the suppression of Auger recombination, as well as to create sophisticated hetero-designs. [reprint (PDF)] |
2. | Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, and B.M. Nguyen Opto-Electronics Review (OER), Vol. 19, No. 3, June 2011, p. 46-54-- June 1, 2011 ...[Visit Journal] Recent efforts to improve the performance of type-II InAs/GaSb superlattice photodiodes and focal plane arrays (FPA) have been reviewed. The theoretical bandstructure models have been discussed first. A review of recent developments in growth and characterization techniques is given. The efforts to improve the performance of MWIR photodiodes and focal plane arrays (FPAs) have been reviewed and the latest results have been reported. It is shown that these improvements has resulted in
background limited performance (BLIP) of single element photodiodes up to 180 K. FPA shows a constant noise equivalent temperature difference (NEDT) of 11 mK up to 120 K and it shows human body imaging up to 170 K. [reprint (PDF)] |
2. | Growth and characterization of InGaAs/InGaP quantum dots for mid-infrared photoconductive detector S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen and M. Razeghi Applied Physics Letters 73 (7)-- August 17, 1998 ...[Visit Journal] We report InGaAs quantum dot intersubband infrared photodetectors grown by low-pressure metalorganic chemical vapor deposition on semi-insulating GaAs substrates. The optimum growth conditions were studied to obtain uniform InGaAs quantum dots constructed in an InGaP matrix. Normal incidence photoconductivity was observed at a peak wavelength of 5.5 μm with a high responsivity of 130 mA/W and a detectivity of 4.74×107 cm· Hz½/W at 77 K. [reprint (PDF)] |
2. | Deep ultraviolet (254 nm) focal plane array E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011 ...[Visit Journal] We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. [reprint (PDF)] |
2. | Aluminum free GaInP/GaAs Quantum Well Infrared Photodetectors for Long Wavelength Detection C. Jelen, S. Slivken, J. Hoff, M. Razeghi, and G. Brown Applied Physics Letters 70 (3)-- January 20, 1997 ...[Visit Journal] We demonstrate quantum well infrared photodetectors based on a GaAs/Ga0.51In0.49P superlattice structure grown by gas-source molecular beam epitaxy. Wafers were grown with varying well widths. Wells of 40, 65, and 75 Å resulted in peak detection wavelengths of 10.4, 12.8, and 13.3 μm with a cutoff wavelength of 13.5, 15, and 15.5 μm, respectively. The measured peak and cutoff wavelengths match those predicted by eight band theoretical analysis. Measured dark currents were lower than equivalent GaAs/AlGaAs samples. [reprint (PDF)] |
2. | Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q.Y. Lu and M. Razeghi Applied Physics Letters, Vol. 100, No. 26, p. 261112-1-- June 25, 2012 ...[Visit Journal] A dual-section, single-mode quantum cascade laser is demonstrated in continuous wave at room temperature with up to 114 nm (50 cm−1) of tuning near a wavelength of 4.8 μm. Power above 100 mW is demonstrated, with a mean side mode suppression ratio of 24 dB. By changing the grating period, 270 nm (120 cm−1) of gap-free electrical tuning for a single gain medium has been realized. [reprint (PDF)] |
2. | Focal plane arrays based on quantum dot infrared photodetectors Manijeh Razeghi; Wei Zhang; Ho-Chul Lim; Stanley Tsao; John Szafraniec; Maho Taguchi; Bijan Movaghar Proc. SPIE 5838, Nanotechnology II, 125 (June 28, 2005);-- June 28, 2005 ...[Visit Journal] Here we report the first demonstrations of infrared focal plane array (FPA) based on GaAs and InP based quantum dot infrared photodetectors (QDIPs). QDIPs are extension of quantum well infrared photodetectors (QWIPs) and are predicted to outperform QWIPs due to their potential advantages including normally incident absorption, higher responsivity and high temperature operation. Two material systems have been studied: InGaAs/InGaP QDIPs on GaAs substrates and InAs QDIP on InP substrates. An InGaAs/InGaP QDIP has been grown on GaAs substrate by LP-MOCVD. Photoresponse was observed at temperatures up to 200 K with a peak wavelength of 4.7 μm and cutoff wavelength of 5.2 μm. A detectivity of 1.2x1011 cm·Hz1/2/W was obtained at T=77 K and bias of -0.9 V, which is the highest for QDIPs grown by MOCVD. An InAs QDIP structure has also been grown on InP substrate by LP-MOCVD. Photoresponse of normal incidence was observed at temperature up to 160K with a peak wavelength of 6.4 μm and cutoff wavelength of 6.6 μm. A detectivity of 1.0x1010 cm·Hz1/2/W was obtained at 77K at biases of -1.1 V, which is the first and highest detectivity reported for QDIP on InP substrate. 256×256 detector arrays were fabricated first time in the world for both the GaAs and InP based QDIPs. Dry etching and indium bump bonding were used to hybridize the arrays to a Litton readout integrated circuit. For the InGaAs/InGaP QDIP FPA, thermal imaging was achieved at temperatures up to 120 K. At T=77K, the noise equivalent temperature difference (NEDT) was measured as 0.509K with a 300K background and f/2.3 optics. For the InP based QDIPs, thermal imaging was achieved at 77 K. [reprint (PDF)] |
2. | Investigations on the substrate dependence of the properties in nominally-undoped β-Ga2O3 thin films grown by PLD F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; C. Ton-That ; L. L. C. Lem ; E. Chikoidze ; M. Neumann-Spallart ; Y. Dumont ; T. Huynh ; M. R. Phillips ; P. Chapon ; R. McClintock ; M. Razeghi Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051R-OLD-- March 23, 2017 ...[Visit Journal] Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in the β-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm²/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)] |
2. | High-power, room-temperature and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ = 4.8 µm J.S. Yu, S. Slivken, S.R. Darvish, A. Evans, B. Gokden and M. Razeghi Applied Physics Letters, 87 (4)-- July 25, 2005 ...[Visit Journal] The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 µm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. [reprint (PDF)] |
2. | Type-II Superlattices and Quantum Cascade Lasers for MWIR and LWIR Free-Space Communications A. Hood, A. Evans and M. Razeghi SPIE Conference, January 20-25, 2008, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices V, Vol. 6900, p. 690005-1-9.-- February 1, 2008 ...[Visit Journal] Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high-speed data networks providing highly secure, short to long range, and high-bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's operating budget. By moving the operating wavelength into the mid- or long-wavelength infrared enhanced link uptimes and increased operating range can be achieved due to less susceptibility to atmospheric affects. The combination of room-temperature, continuous-wave, high-power quantum cascade lasers and high operating temperature type-II superlattice photodetectors offers the benefits of mid- and long-wavelength infrared systems as well as practical operating conditions for next generation free-space communications systems.
[reprint (PDF)] |
2. | Characterization and Analysis of Single-Mode High-Power CW Quantum-Cascade Laser W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R. Meyer, J. Nguyen, A. Evans, J.S. Yu, S.R. Darvish, S. Slivken, and M. Razeghi Journal of Applied Physics 98-- October 15, 2005 ...[Visit Journal] We measured and modeled the performance characteristics of a distributed-feedback quantum-cascade laser exhibiting high-power continuous-wave (CW) operation in a single spectral mode at λ~4.8 µm and temperatures up to 333 K. The sidemode suppression ratio exceeds 25 dB, and the emission remains robustly single mode at all currents and temperatures tested. CW output powers of 99 mW at 298 K and 357 mW at 200 K are obtained at currents well below the thermal rollover point. The slope efficiency and subthreshold amplified spontaneous emission spectra are shown to be consistent with a coupling coefficient of no more than κL ~ 4–5, which is substantially lower than the estimate of 9 based on the nominal grating fabrication parameters. [reprint (PDF)] |
2. | Surface Emitting, Tunable, Mid-Infrared Laser with High Output Power and Stable Output Beam Steven Slivken, Donghai Wu & Manijeh Razeghi Scientific Reports volume 9, Article number: 549-- January 24, 2019 ...[Visit Journal] A reflective outcoupler is demonstrated which can allow for stable surface emission from a quantum cascade laser and has potential for cost-effective wafer-scale manufacturing. This outcoupler is integrated with an amplified, electrically tunable laser architecture to demonstrate high power surface emission at a wavelength near 4.9 μm. Single mode peak power up to 6.7 W is demonstrated with >6 W available over a 90 cm−1 (215 nm) spectral range. A high quality output beam is realized with a simple, single-layer, anti-reflective coating. The beam shape and profile are shown to be independent of wavelength. [reprint (PDF)] |
2. | Electroluminescence of InAs/GaSb heterodiodes D. Hoffman, A. Hood, E. Michel, F. Fuchs, and M. Razeghi IEEE Journal of Quantum Electronics, 42 (2)-- February 1, 2006 ...[Visit Journal] The electroluminescence of a Type-II InAs-GaSb superlattice heterodiode has been studied as a function of injection current and temperature in the spectral range between 3 and 13 μm. The heterodiode comprises a Be-doped midwavelength infrared (MWIR) superlattice with an effective bandgap around 270 meV and an undoped long wavelength infrared (LWIR) superlattice with an effective bandgap of 115 meV. [reprint (PDF)] |
Page 7 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
|