Page 7 of 28:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (676 Items)

3.  Low Dark Current Deep UV AlGaN Photodetectors on AlN Substrate
Lakshay Gautam, Junhee Lee, Gail Brown, Manijeh Razeghi
IEEE Journal of Quantum Electronics, vol. 58, no. 3, pp. 1-5, June 2022, Art no. 4000205 ...[Visit Journal]
We report high quality, low dark current, deep Ultraviolet AlGaN/AlN Photodetectors on AlN substrate. AlGaN based Photodetectors are grown and fabricated both on AlN and Sapphire substrates with the same epilayer structure. Subsequently, electrical characteristics of both photodetectors on AlN substrate and Sapphire are compared. A reduction of 4 orders of magnitude of dark current density is reported in UV detectors grown on AlN substrate with respect to Sapphire substrate. [reprint (PDF)]
 
3.  Monolithic, steerable, mid-infrared laser realized with no moving parts
Slivken S, Wu D, Razeghi M
Scientific Reports 7, 8472 -- May 24, 2018 ...[Visit Journal]
The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function. [reprint (PDF)]
 
3.  AlGaN/AlN MOVPE heteroepitaxy: pulsed co-doping SiH4 and TMIn
Ilkay Demir, Yusuf Koçak, A. Emre Kasapoğlu, Manijeh Razeghi, Emre Gür and Sezai Elagoz
Semicond. Sci. Technol. 34 075028-- June 24, 2019 ...[Visit Journal]
We report a new growth approach pulsed co-doping growth of AlxGa1−xN (x > 0.5) epilayers on AlN/Al2O3 templates by metal organic vapor phase epitaxy (MOVPE). Using this approach SiH4 (silane) and TMIn (trimethylindium) supplied to the growth chamber alternately and pulsed during the growth of AlGaN epilayers. Structural and morphological quality of AlGaN epilayers were investigated by high resolution x-ray diffraction (HR-XRD), atomic force microscopy (AFM), Raman spectroscopy, and scanning electron microscopy (SEM) techniques. It has shown that higher crystalline quality with low full width at half maximum (FWHM) and smoother surface morphology with reduced hexagonal hillock density has been obtained by the pulsed co-doping growth approach. Volcano like hillock structures has been confirmed by Raman mapping. [reprint (PDF)]
 
3.  EPR Study of Gd around the Ferroelastic Transition Point of Pb3 (PO4)2
M. RAZEGHI and B. HOULIER
M. RAZEGHI et al., phys. stat. sol. (b) 89, K135 (1978) -- October 1, 1978 ...[Visit Journal][reprint (PDF)]
 
3.  Quantum Hall liquid-to-insulator transition in In1-xGaxAs/InP heterostructures
W. Pan, D. Shahar, D.C. Tsui, H.P. Wei, and M. Razeghi
Physical Review B 55 (23)-- June 15, 1997 ...[Visit Journal]
We report a temperature- and current-scaling study of the quantum Hall liquid-to-insulator transition in an In1-xGaxAs/InP heterostructure. When the magnetic field is at the critical field Bc, ρxx=0.86h/e². Furthermore, the transport near Bc scales as |B- Bc|T with κ=0.45±0.05, and as |B- Bc|I-b with b=0.23±0.05. The latter can be due to phonon emission in a dirty piezoelectric medium, or can be the consequence of critical behavior near Bc, within which z=1.0±0.1 and ν=2.1±0.3 are obtained from our data. [reprint (PDF)]
 
3.  Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011 ...[Visit Journal]
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. [reprint (PDF)]
 
3.  Molecular beam epitaxial growth of InSb p-i-n photodetectors on GaAs and Si
E. Michel, R. Peters, S. Slivken, C. Jelen, P. Bove, J. Xu, I. Ferguson, and M. Razeghi
Optoelectronic Integrated Circuit Materials, Physics and Devices, SPIE Conference, San Jose, CA; Proceedings, Vol. 2397-- February 6, 1995 ...[Visit Journal]
High quality InSb has been grown by Molecular Beam Epitaxy and optimized using Reflection High Energy Electron Diffraction. A 4.8 micrometers InSb layer grown on GaAs at a growth temperature of 395 degree(s)C and a III/V incorporation ratio of 1:1.2 had an X-ray rocking curve FWHM of 158 arcsec and a Hall mobility of 92300 cm2V-1s-1 at 77 K, the best reported to date for InSb nucleated directly onto GaAs. InSb p-i-n structures of 5.8 micrometers grown under the same conditions demonstrated a X-ray Full Width at Half Maximum of 101 arcsec and 131 arcsec for GaAs and Si substrates, respectively, and exhibited excellent uniformity of +/- 3 arcsec over a 3' substrate. Prototype InSb p-i-n detectors on Si have been fabricated and have demonstrated photovoltaic response at 6.5 micrometers up to 200 K. These p-i-n detectors have also exhibited the highest D* for a device grown onto Si. [reprint (PDF)]
 
3.  Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD
V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015 ...[Visit Journal]
NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. [reprint (PDF)]
 
3.  High quality LEO growth and characterization of GaN films on Al2O3 and Si substrates
M. Razeghi, P. Kung, D. Walker, M. Hamilton, and J. Diaz
SPIE International Conference on Solid State Crystals, Zakopane, Poland; Proceedings 3725-- October 12, 1998 ...[Visit Journal]
We report the lateral epitaxial overgrowth (LEO) of GaN films on (00.1) Al2O3 and (111) Si substrates by metalorganic chemical vapor deposition. The LEO on Si substrates was possible after achieving quasi monocrystalline GaN template films on (111) Si substrates. X-ray diffraction, photoluminescence, scanning electron microscopy and atomic force microscopy were used to assess the quality of the LEO films. Lateral growth rates more than 5 times as high as vertical growth rates were achieved for both LEO growths of GaN on sapphire and silicon substrates. [reprint (PDF)]
 
3.  Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices
A.M. Hoang, G. Chen, A. Haddadi, S. Abdollahi Pour, and M. Razeghi
Applied Physics Letters, Vol. 100, No. 21, p. 211101-1-- May 21, 2012 ...[Visit Journal]
We demonstrate the feasibility of the InAs/GaSb/AlSb type-II superlattice photodiodes operating at the short wavelength infrared regime below 3  μm. An n-i-p type-II InAs/GaSb/AlSb photodiode was grown with a designed cut-off wavelength of 2 μm on a GaSb substrate. At 150  K, the photodiode exhibited a dark current density of 5.6 × 10−8 A/cm² and a front-side-illuminated quantum efficiency of 40.3%, providing an associated shot noise detectivity of 1.0 × 1013 Jones. The uncooled photodiode showed a dark current density of 2.2 × 10−3 A/cm² and a quantum efficiency of 41.5%, resulting in a detectivity of 1.7 × 1010 Jones [reprint (PDF)]
 
3.  Characterization of ZnO thin films grown on c-sapphire by pulsed laser deposition as templates for regrowth of zno by metal organic chemical vapor deposition
D. J. Rogers ; F. Hosseini Teherani ; C. Sartel ; V. Sallet ; F. Jomard ; P. Galtier ; M. Razeghi
Proc. SPIE 7217, Zinc Oxide Materials and Devices IV, 72170F (February 17, 2009)-- February 17, 2009 ...[Visit Journal]
The use of ZnO template layers grown Pulsed Laser Deposition (PLD) has been seen to produce dramatic improvements in the surface morphology, crystallographic quality and optical properties of ZnO layers grown on c-sapphire substrates by Metal Organic Chemical Vapor Deposition. This paper provides complementary details on the PLD-grown ZnO template properties. [reprint (PDF)]
 
3.  High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors
Stephen M. Johnson; Emily Dial; M. Razeghi
Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal]
Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers (QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)]
 
3.  Cubic Phase GaN on Nano-grooved Si (100) via Maskless Selective Area Epitaxy
Bayram, C., Ott, J. A., Shiu, K.-T., Cheng, C.-W., Zhu, Y., Kim, J., Razeghi, M. and Sadana, D. K.
Adv. Funct. Mater. 2014-- April 1, 2014 ...[Visit Journal]
A method of forming cubic phase (zinc blende) GaN (referred as c-GaN) on a CMOS-compatible on-axis Si (100) substrate is reported. Conventional GaN materials are hexagonal phase (wurtzite) (referred as h-GaN) and possess very high polarization fields (∼MV/cm) along the common growth direction of <0001>. Such large polarization fields lead to undesired shifts (e.g., wavelength and current) in the performance of photonic and vertical transport electronic devices. The cubic phase of GaN materials is polarization-free along the common growth direction of <001>, however, this phase is thermodynamically unstable, requiring low-temperature deposition conditions and unconventional substrates (e.g., GaAs). Here, novel nano-groove patterning and maskless selective area epitaxy processes are employed to integrate thermodynamically stable, stress-free, and low-defectivity c-GaN on CMOS-compatible on-axis Si. These results suggest that epitaxial growth conditions and nano-groove pattern parameters are critical to obtain such high quality c-GaN. InGaN/GaN multi-quantum-well structures grown on c-GaN/Si (100) show strong room temperature luminescence in the visible spectrum, promising visible emitter applications for this technology. [reprint (PDF)]
 
3.  GaInAsP/InP 1.35 μm Double Heterostructure Laser Grown on Silicon Substrate by Metalorganic Chemical Vapor Deposition
K. Mobarhan, C. Jelen, E. Kolev, and M. Razeghi
Journal of Applied Physics 74 (1)-- July 1, 1993 ...[Visit Journal]
A 1.35 μm GaInAsP/InP double heterostructure laser has been grown on a Si substrate using low‐pressure metalorganic chemical vapor deposition. This was done without the use of a superlattice layer or a very thick InP buffer layer, which are used to prevent the dislocations from spreading into the active layer. Pulsed operation with output power of over 200 mW per facet was achieved at room temperature for broad area lasers with 20 μm width and 170 μm cavity length. The threshold current density of a 350 μm cavity length device was 9.8 kA/cm². The characteristic temperature was 66 K. [reprint (PDF)]
 
3.  Investigation of impurities in type-II InAs/GaSb superlattices via capacitance-voltage measurement
G. Chen, A. M. Hoang, S. Bogdanov, A. Haddadi, P. R. Bijjam, B.-M. Nguyen, and M. Razeghi
Applied Physics Letters 103, 033512 (2013)-- July 17, 2013 ...[Visit Journal]
Capacitance-voltage measurement was utilized to characterize impurities in the non-intentionally doped region of Type-II InAs/GaSb superlattice p-i-n photodiodes. Ionized carrier concentration versus temperature dependence revealed the presence of a kind of defects with activation energy below 6 meV and a total concentration of low 1015 cm−3. Correlation between defect characteristics and superlattice designs was studied. The defects exhibited a p-type behavior with decreasing activation energy as the InAs thickness increased from 7 to 11 monolayers, while maintaining the GaSb thickness of 7 monolayers. With 13 monolayers of InAs, the superlattice became n-type and the activation energy deviated from the p-type trend. [reprint (PDF)]
 
3.  Infrared Imaging Arrays Using Advanced III-V Materials and technology
M. Razeghi, J.D. Kim, C. Jelen, S. Slivken, E. Michel, H. Mohseni, J.J. Lee, J. Wojkowski, K.S. Kim, H.I. Jeon, and J. X
IEEE Proceedings, Advanced Workshop on Frontiers in Electronics (WOFE), Tenerife, Spain;-- January 6, 1997 ...[Visit Journal]
Photodetectors operating in the 3-5 and 8-12 μm atmospheric windows are of great importance for applications in infrared (IR) thermal imaging. HgCdTe has been the dominant material system for these applications. However, it suffers from instability and non-uniformity problems over large areas due to high Hg vapor pressure during the material, growth. There has been a lot of interest in the use of heteroepitaxially grown Sb-based alloys, its strained layer superlattices, and GaAs based quantum wells as alternatives to MCT. This interest has been driven by the advanced material growth and processing technology available for the III-V material system [reprint (PDF)]
 
3.  Thermal Conductivity of InAs/GaSb Type II Superlattice
C. Zhou, B.M. Nguyen, M. Razeghi and M. Grayson
Journal of Electronic Materials, Vol. 41, No. 9, p. 2322-2325-- August 1, 2012 ...[Visit Journal]
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice(T2SL) is measured from 13 K to 300 K using the 3x method. Thermal conductivity is reduced by up to two orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1 W/m K to 8 W/m K may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL interband cascade lasers and highpower photodiodes. We describe a power-law approximation to model nonlinearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively. [reprint (PDF)]
 
3.  EPR STUDY OF Mn 2. AROUND THE FERROELASTIC TRANSITION POINT OF Pb3(PO4)2
M. Razeghi, B. Houlier and M. Yuste
M. Razeghi et al. EPR STUDY OF Mn 2. AROUND THE FERROELASTIC TRANSITION POINT OF Pb3(PO4)2, Solid State Communications, Vol. 26, pp. 665-668. -- January 26, 1978 ...[Visit Journal]
The spin Hamiltonian parameters of Mn 2÷ have been measured above and below the transition point (180"C) of the lead phosphate. They show that Mn 2+ substitutes a Pbl ion. Between 175 and 180vC the principal axis OX of the fine tensor is parallel to the wave vector of the soft mode which condensates at the transition point. An exaltation of the linewidth is observed. The linewidth remains constant within 50C of Te; in this temperature range, the "static regime" is achieved, and the correlation time of the fluctuations is less than 10 -s sec. [reprint (PDF)]
 
3.  Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices
C. Bayram ; K. T. Shiu ; Y. Zhu ; C. W. Cheng ; D. K. Sadana ; F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; Y. Zhang ; S. Gautier ; C.-Y. Cho ; E. Cicek ; Z. Vashaei ; R. McClintock ; M. Razeghi
Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86260L (March 18, 2013)-- March 18, 2013 ...[Visit Journal]
Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization. [reprint (PDF)]
 
3.  Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Feihu Wang, Steven Slivken, and Manijeh Razeghi
OSA Photonics Research •https://doi.org/10.1364/PRJ.423573 ...[Visit Journal]
High-power, high-speed quantum cascade lasers (QCLs) with stable emission in the mid-infrared regime are of great importance for applications in metrology, telecommunication, and fundamental tests of physics. Owing to the inter-sub-band transition, the unique ultrafast gain recovery time of the QCL with picosecond dynamics is expected to overcome the modulation limit of classical semiconductor lasers and bring a revolution for the next generation of ultrahigh-speed optical communication. Therefore, harmonic injection locking, offering the possibility to fast modulate and greatly stabilize the laser emission beyond the rate limited by cavity length, is inherently adapted to QCLs. In this work, we demonstrate for the first time the harmonic injection locking of a mid-infrared QCL with an output power over 1 watt in continuous-wave operation at 288 K. Compared with an unlocked laser, the inter-mode spacing fluctuation of an injection locked QCL can be considerably reduced by a factor above 1×10 E3, which permits the realization of an ultra-stable mid-infrared semiconductor laser with high phase coherence and frequency purity. Despite temperature change, this fluctuation can be still stabilized to hertz level by a microwave modulation up to ∼18 GHz. These results open up the prospect of the applications of mid-infrared QCL technology for frequency comb engineering, metrology and the next generation ultrahigh-speed telecommunication. It may also stimulate new schemes for exploring ultrafast mid-infrared pulse generation in QCLs. [reprint (PDF)]
 
3.  Recent advances in InAs/InAs1- xSbx/AlAs1-xSbx gap-engineered Type-II superlattice-based photodetectors
Manijeh Razeghi, Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Thomas Yang
Proc. SPIE 10177, Infrared Technology and Applications XLIII, 1017705 -- May 9, 2017 ...[Visit Journal]
InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices (T2SLs) is a system of multi-interacting quantum wells. Since its introduction, this material system has drawn a lot of attention especially for infrared detection. In recent years, InAs/InAs1- xSbx/AlAs1-xSbx T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process which elevated the performances of T2SL-based photodetectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). In this paper, we will present the current status of InAs/InAs1-xSbx/AlAs1-xSbx T2SL-based photodetectors for detection in different infrared regions, from short-wavelength (SWIR) to long-wavelength (LWIR) infrared, and the future outlook of this material system. [reprint (PDF)]
 
3.  Ridge-Width Dependence on High-Temperature Continuous-Wave Quantum-Cascade Laser Operation
S. Slivken, J.S. Yu, A. Evans, L. Doris, J. David, and M. Razeghi
IEEE Photonics Technology Letters, 16 (3)-- March 1, 2004 ...[Visit Journal]
We report continuous-wave (CW) operation of quantum-cascade lasers (λ=6 μm) up to a temperature of 313 K (40°C). The maximum CW optical output powers range from 212 mW at 288 K to 22 mW at 313 K and are achieved with threshold current densities of 2.21 and 3.11 kA/cm2, respectively, for a high-reflectivity-coated 12-μm-wide and 2-mm-long laser. At room temperature (298 K), the power output is 145 mW at 0.87 A, corresponding to a power conversion efficiency of 1.68%. The maximum CW operating temperature of double-channel ridge waveguide lasers mounted epilayer-up on copper heatsinks is analyzed in terms of the ridge width, which is varied between 12 and 40 μm. A clear trend of improved performance is observed as the ridge narrows. [reprint (PDF)]
 
3.  Comparison of Trimethylgallium and Triethylgallium for the Growth of GaN
A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. Mitchel, and H.R. Vydyanath
Applied Physics Letters 71 (22)-- December 1, 1997 ...[Visit Journal]
GaN films grown by low-pressure metalorganic chemical vapor deposition using trimethylgallium and triethylgallium as gallium precursors are compared. The films were characterized by x-ray diffraction, Hall effect, photoluminescence, secondary ion mass spectroscopy, and etch pit density measurements. GaN layers grown using triethylgallium exhibited superior electrical and optical properties and a lower carbon impurity concentration. [reprint (PDF)]
 
3.  Temperature dependence of the dark current and activation energy at avalanche onset of GaN Avalanche Photodiodes
M.P. Ulmer, E. Cicek, R. McClintock, Z. Vashaei and M. Razeghi
SPIE Proceedings, Vol. 8460, p. 84601G-1-- August 15, 2012 ...[Visit Journal]
We report a study of the performance of an avalanche photodiode (APD) as a function of temperature from 564 K to 74 K. The dark current at avalanche onset decreases from 564 K to 74 K by approximately a factor of 125 and from 300 K to 74K the dark current at avalanche offset is reduced by a factor of about 10. The drop would have been considerably larger if the activation energy at avalanche onset (Ea) did not also decrease with decreasing temperature. These data give us insights into how to improve the single-photon counting performance of a GaN based ADP. [reprint (PDF)]
 
3.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 

Page 7 of 28:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28  >> Next  (676 Items)