Page 7 of 23:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  >> Next  (569 Items)

2.  Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011 ...[Visit Journal]
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. [reprint (PDF)]
 
2.  GaInAs/InP nanopillar arrays for long wavelength infrared detection
A. Gin, Y. Wei, A. Hood, D. Hoffman, M. Razeghi and G.J. Brown
SPIE Conference, Jose, CA, Vol. 5732, pp. 350-- January 22, 2005 ...[Visit Journal]
Nanopillar devices have been fabricated from GaInAs/InP QWIP material grown by MOCVD. Using electron beam lithography and reactive ion etching techniques, large, regular arrays of nanopillars with controllable diameters ranging from 150 nm to less than 40 nm have been reproducibly formed. Photoluminescence experiments demonstrate a strong peak wavelength blue shift for nanopillar structures compared to the as-grown quantum well material. Top and bottom metal contacts have been realized using a polyimide planarization and etchback procedure. I-V and noise measurements have been performed. Optical measurements indicate photoconductive response in selected nanopillar arrays. Device peak wavelength response occurs at about 8 µm with peak device responsivity of 420 mA/W. Peak detectivity of 3×108 cm·Hz½/W has been achieved at -1V bias and 30 K. [reprint (PDF)]
 
2.  ZnO nanorod electrodes for hydrogen evolution and storage
Harinipriya, S.; Usmani, B.; Rogers, D. J.; Sandana, V. E.; Teherani, F. Hosseini; Lusson, A.; Bove, P.; Drouhin, H.-J.; Razeghi, M.
Proc. SPIE 8263, Oxide-based Materials and Devices III, 82631Y (February 9, 2012)-- February 9, 2012 ...[Visit Journal]
Due to the attractive combination of a relatively high specific heat of combustion with a large specific energy capacity, molecular hydrogen (H2) is being investigated for use as an alternative to fossil fuels. Energy-efficient H2 production and safe storage remain key technical obstacles to implementation of an H2 based economy, however. ZnO has been investigated for use as an alternative photocatalytic electrode to TiO2 for solarpowered photo-electro-chemical (PEC) electrolysis, in which H2 is generated by direct water splitting in a cell with a metal cathode and a semiconducting anode. In this investigation, ZnO NR grown on Si (100) substrates by pulsed laser deposition were investigated for use as electrodes in the Hydrogen Evolution Reaction (HER). The electrochemical potential and Fermi energy of the ZnO NR were estimated from the electrochemical current density in acid and alkaline solutions via phenomenological thermodynamic analysis. As well as acting as an effective electrocalytic cathode, the ZnO NR appear to operate as a hydrogen reservoir. These results indicate that the ZnO NR have excellent potential for the storage of evolved H2. [reprint (PDF)]
 
2.  A study into the impact of sapphire substrate orientation on the properties of nominally-undoped β-Ga2O3 thin films grown by pulsed laser deposition
F. H. Teherani; D. J. Rogers; V. E. Sandana; P. Bove; C. Ton-That; L. L. C. Lem; E. Chikoidze; M. Neumann-Spallart; Y. Dumont; T. Huynh; M. R. Phillips; P. Chapon; R. McClintock; M. Razeghi
Proceedings Volume 10105, Oxide-based Materials and Devices VIII; 101051R-- March 23, 2017 ...[Visit Journal]
Nominally-undoped Ga2O3 layers were deposited on a-, c- and r-plane sapphire substrates using pulsed laser deposition. Conventional x-ray diffraction analysis for films grown on a- and c-plane sapphire showed the layers to be in the β-Ga2O3 phase with preferential orientation of the (-201) axis along the growth direction. Pole figures revealed the film grown on r-plane sapphire to also be in theβ-Ga2O3 phase but with epitaxial offsets of 29.5°, 38.5° and 64° from the growth direction for the (-201) axis. Optical transmission spectroscopy indicated that the bandgap was ~5.2eV, for all the layers and that the transparency was > 80% in the visible wavelength range. Four point collinear resistivity and Van der Pauw based Hall measurements revealed the β-Ga2O3 layer on r-plane sapphire to be 4 orders of magnitude more conducting than layers grown on a- and c-plane sapphire under similar conditions. The absolute values of conductivity, carrier mobility and carrier concentration for the β-Ga2O3 layer on r-sapphire (at 20Ω-1.cm-1, 6 cm2/Vs and 1.7 x 1019 cm-3, respectively) all exceeded values found in the literature for nominally-undoped β-Ga2O3 thin films by at least an order of magnitude. Gas discharge optical emission spectroscopy compositional depth profiling for common shallow donor impurities (Cl, F, Si and Sn) did not indicate any discernable increase in their concentrations compared to background levels in the sapphire substrate. It is proposed that the fundamentally anisotropic conductivity in β-Ga2O3 combined with the epitaxial offset of the (-201) axis observed for the layer grown on r-plane sapphire may explain the much larger carrier concentration, electrical conductivity and mobility compared with layers having the (-201) axis aligned along the growth direction. [reprint (PDF)]
 
2.  High performance Type-II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan
SPIE Conference, Orlando, FL, Vol. 5783, pp. 86-- March 28, 2005 ...[Visit Journal]
We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type-II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 µm up to 32 µm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays are presented. [reprint (PDF)]
 
2.  High-performance bias-selectable dual-band Short-/Mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices
M. Razeghi; A.M. Hoang; A. Haddadi; G. Chen; S. Ramezani-Darvish; P. Bijjam; P. Wijewarnasuriy; E. Decuir
Proc. SPIE 8704, Infrared Technology and Applications XXXIX, 87041W (June 18, 2013)-- June 18, 2013 ...[Visit Journal]
We report a bias selectable dual-band Type-II superlattice-based short-wave infrared (SWIR) and mid-wave infrared (MWIR) co-located photodetector capable of active and passive imaging. A new double-layer etch-stop scheme is introduced for back-side-illuminated photodetectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density to be ∼1×10-5 A/cm2 for the ∼4.2 μm cut-off MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F/2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using and integration time of 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. An excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)]
 
2.  High-Performance InP-Based Mid-IR Quantum Cascade Lasers
M. Razeghi
IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal]
Quantum cascade lasers (QCLs) were once considered as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)]
 
2.  Highly selective two-color mid-wave and long-wave infrared detector hybrid based on Type-II superlattices
E.K. Huang, M.A. Hoang, G. Chen, S.R. Darvish, A. Haddadi, and M. Razeghi
Optics Letters, Vol. 37, No. 22, p. 4744-4746-- November 15, 2012 ...[Visit Journal]
We report a two-color mid-wave infrared (MWIR) and long-wave infrared (LWIR) co-located detector with 3 μm active region thickness per channel that is highly selective and can perform under high operating temperatures for the MWIR band. Under back-side illumination, a temperature evolution study of the MWIR detector’s electro-optical performance found the 300 K background-limit with 2π field-of-view to be achieved below operating temperatures of 160 K, at which the temperature’s 50% cutoff wavelength was 5.2 μm. The measured current reached the system limit of 0.1 pA at 110 K for 30 μm pixel-sized diodes. At 77 K, where the LWIR channel operated with a 50% cutoff wavelength at 11.2 μm, an LWIR selectivity of ∼17% was achieved in the MWIR wave band between 3 and 4.7 μm, making the detector highly selective. [reprint (PDF)]
 
2.  Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice
Donghai Wu, Jiakai Li, Arash Dehzangi, and Manijeh Razeghi
AIP Advances 10, 025018-- February 11, 2020 ...[Visit Journal]
A high operating temperature mid-wavelength infrared pBn photodetector based on the type-II InAs/InAsSb superlattice on a GaSb substrate has been demonstrated. At 150 K, the photodetector exhibits a peak responsivity of 1.48 A/W, corresponding to a quantum efficiency of 47% at −50 mV applied bias under front-side illumination, with a 50% cutoff wavelength of 4.4 μm. With an R×A of 12,783 Ω·cm² and a dark current density of 1.16×10−5A/cm² under −50 mV applied bias, the photodetector exhibits a specific detectivity of 7.1×1011 cm·Hz½/W. At 300 K, the photodetector exhibits a dark current density of 0.44 A/cm²and a quantum efficiency of 39%, resultingin a specific detectivity of 2.5×109 cm·Hz½/W. [reprint (PDF)]
 
2.  Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport
V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, R. McClintock, C. Bayram, M. Razeghi, H-J Drouhin, M.C. Clochard, V. Sallett, G. Garry, and F. Falyouni
Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1678-1683-- May 29, 2009 ...[Visit Journal]
This article compares the forms and properties of ZnO nanostructures grown on Si (111) and c-plane sapphire (c-Al2O3) substrates using three different growth processes: metal organic chemical vapor deposition (MOCVD), pulsed laser deposition (PLD), and physical vapor transport (PVT). A very wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs, and some novel structures resembelling “bevelled” nanowires. PVT gave the widest family of nanostructures. PLD gave dense regular arrays of nanorods with a preferred orientation perpendicular to the substrate plane on both Si and c-Al2O3 substrates, without the use of a catalyst. X-ray diffraction (XRD) studies confirmed that nanostructures grown by PLD were better crystallized and more highly oriented than those grown by PVT and MOCVD. Samples grown on Si showed relatively poor XRD response but lower wavelength emission and narrower linewidths in PL studies. [reprint (PDF)]
 
2.  Room temperature neagtive differential resistance characteristics of polar III-nitride resonant tunneling diodes
C. Bayram, Z. Vashaei, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 9, p. 092104-1-- August 30, 2010 ...[Visit Journal]
III-nitride resonant tunneling diodes (RTDs), consisting Al0.2Ga0.8N/GaN double-barrier (DB) active layers, were grown on c-plane lateral epitaxial overgrowth (LEO) GaN/sapphire and c-plane freestanding (FS) GaN. RTDs on both templates, fabricated into mesa diameters ranging from 5 to 35 μm, showed negative differential resistance (NDR) at room temperature. NDR characteristics (voltage and current density at NDR onset and current-peak-to-valley ratio) were analyzed and reported as a function of device size and substrate choice. Our results show that LEO RTDs perform as well as FS ones and DB active layer design and quality have been the bottlenecks in III-nitride RTDs. [reprint (PDF)]
 
2.  High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices
S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen and M. Razeghi
Applied Physics Letters, Vol. 98, No. 14, p. 143501-1-- April 4, 2011 ...[Visit Journal]
The dominant dark current mechanisms are identified and suppressed to improve the performance of midwave infrared InAs/GaSb Type-II superlattice photodiodes at high temperatures. The optimized heterojunction photodiode exhibits a quantum efficiency of 50% for 2 μm thick active region without any bias dependence. At 150 K, R0A of 5100 Ω·cm² and specific detectivity of 1.05×1012 cm·Hz0.5·W-1 are demonstrated for a 50% cutoff wavelength of 4.2 μm. Assuming 300 K background temperature and 2π field of view, the performance of the detector is background limited up to 180 K, which is improved by 25 °C compared to the homojunction photodiode. Infrared imaging using f/2.3 optics and an integration time of 10.02 ms demonstrates a noise equivalent temperature difference of 11 mK at operating temperatures below 120 K. [reprint (PDF)]
 
2.  Fabrication of 12 µm pixel-pitch 1280 × 1024 extended short wavelength infrared focal plane array using heterojunction type-II superlattice-based photodetector
Arash Dehzangi , Abbas Haddadi, Romain Chevallier, Yiyun Zhang and Manijeh Razegh
Semicond. Sci. Technol. 34, 03LT01-- February 4, 2019 ...[Visit Journal]
We present an initial demonstration of a 1280 × 1024 extended short-wavelength infrared focal plane array (FPA) imager with 12μm pixel-pitch based on type–II InAs/AlSb/GaSb superlattice heterojunction photodetectors, with a novel bandstructure-engineered photo-generated carrier extractor as the window layer in the hetero structure to efficiently extract the photo-generated carriers. This heterostructure with a larger bandgap top window/contact layer leads to the device having lower dark current density compared to conventional pn junction devices. The large format FPA was fabricated with 12 μm pixel-pitch using a developed fabrication process. Test pixels fabricated separately exhibit 100% cut–off wavelengths of ∼2.22, ∼2.34μm, and ∼2.45μm at 150, 200K, and 300K. The test devices achieve saturated quantum efficiency values under zero bias of 54.3% and 68.4% at 150 and 300K, under back-side illumination and without any anti-reflection coating. At 150K, these photodetectors exhibit dark current density of 1.63 × 10−7 A·cm−2 under −20mV applied bias providing a specific detectivity of 1.01 × 1011 cm ·Hz½/W at 1.9μm. [reprint (PDF)]
 
2.  Beam Steering in High-Power CW Quantum Cascade Lasers
W.W. Bewley, J.R. Lindle, C.S. Kim, I. Vurgaftman, J.R. Meyer, A.J. Evans, J.S. Yu, S. Slivken, and M. Razeghi
IEEE Journal of Quantum Electronics, 41 (6)-- June 1, 2005 ...[Visit Journal]
We report the light-current (L-I), spectral, and far-field characteristics of quantum cascade lasers (QCLs) with seven different wavelengths in the λ=4.3 to 6.3 μm range. In continuous-wave (CW) mode, the narrow-stripe (≈13 μm) epitaxial- side-up devices operated at temperatures up to 340 K, while at 295 K the CW output power was as high as 640 mW with a wallplug efficiency of 4.5%. All devices with λ≥4.7 μm achieved room-temperature CW operation, and at T=200 K several produced powers exceeding 1 W with ≈10% wallplug efficiency. The data indicated both spectral and spatial instabilities of the optical modes. For example, minor variations of the current often produced nonmonotonic hopping between spectra with envelopes as narrow as 5-10 nm or as broad as 200-250 nm. Bistable beam steering, by far-field angles of up to ±12° from the facet normal, also occurred, although even in extreme cases the beam quality never became worse than twice the diffraction limit. The observed steering is consistent with a theory for interference and beating between the two lowest order lateral modes. We also describe simulations of a wide-stripe photonic-crystal distributed-feedback QCL, which based on the current material quality is projected to emit multiple watts of CW power into a single-mode beam at T=200 K. [reprint (PDF)]
 
2.  InAs/InAs1-XSbx Type-II Superlattices for High-Performance Long-Wavelength Infrared Medical Thermography
Manijeh Razeghi, Abbas Haddadi, Guanxi Chen, Romain Chevallier and Ahn Minh Hoang
ECS Trans. 2015 66(7): 109-116-- June 1, 2015 ...[Visit Journal]
We present the demonstration of a high-performance long-wavelength infrared nBn photodetectors based on InAs/InAs1-xSbx type-II superlattices on GaSb substrate. The photodetector’s 50% cut-off wavelength was ~10 μm at 77K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at -90 mV applied bias voltage under front-side illumination and without any anti-reflection coating. With an R×A of 119 Ω·cm² and a dark current density of 4.4×10-4 A/cm² under -90 mV applied bias voltage at 77 K, the photodetector exhibited a specific detectivity of 2.8×1011 Jones. This photodetector opens a new horizon for making infrared imagers with higher sensitivity for medical thermography.
 
2.  A lifetime of contributions to the world of semiconductors using the Czochralski invention
Manijeh Razeghi
Journal of Vacuum Volume 146, Pages 308-328-- December 1, 2017 ...[Visit Journal]
Over the course of my career, I have made numerous contributions related to semiconductor crystal growth and high performance optoelectronics over a vast region of the electromagnetic spectrum (ultraviolet to terahertz). In 2016 this cumulated in my receiving the Jan Czochralski Gold Medal award from the European Materials Research Society. This article is designed to provide a historical perspective and general overview of these scientific achievements, on the occasion of being honored by this award. These achievements would not have been possible without high quality crystalline substrates, and this article is written in honor of Jan Czochralski on the 100th anniversary of his important discovery. [reprint (PDF)]
 
2.  Mid-infrared quantum cascade lasers with high wall plug efficiency
Y. Bai, B. Gokden, S. Slivken, S.R. Darvish, S.A. Pour, and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0O-- January 26, 2009 ...[Visit Journal]
We demonstrate optimization of continuous wave (cw) operation of 4.6 µm quantum cascade lasers (QCLs). A 19.7 µm by 5 mm, double channel processed device exhibits 33% cw WPE at 80 K. Room temperature cw WPE as high as 12.5% is obtained from a 10.6 µm by 4.8 mm device, epilayer-down bonded on a diamond submount. With the semi-insulating regrowth in a buried ridge geometry, 15% WPE is obtained with 2.8 W total output power in cw mode at room temperature. This accomplishment is achieved by systematically decreasing the parasitic voltage drop, reducing the waveguide loss and improving the thermal management. [reprint (PDF)]
 
2.  Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers
N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 101, No. 24, p. 241110-1-- December 10, 2012 ...[Visit Journal]
We demonstrate quantum cascade lasers emitting at wavelengths of 3–3.2 μm in the InP-based material system. The laser core consists of GaInAs/AlInAs using strain balancing technique. In room temperature pulsed mode operation, threshold current densities of 1.66 kA∕cm² and 1.97 kA∕cm², and characteristic temperatures (T0) of 108 K and 102 K, are obtained for the devices emitting at 3.2 μm and 3 μm, respectively. Room temperature continuous wave operation is achieved at both wavelengths. [reprint (PDF)]
 
2.  Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier
A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi
Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal]
Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)]
 
2.  Electrical Characterization of AlxGa1-xN for UV Photodetector Applications
A. Saxler, M. Ahoujja, W.C. Mitchel, P. Kung, D. Walker, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
Ultraviolet photodetectors have many military and commercial applications. However, for many of these applications, the photodetectors must be solar blind. This means that the photodetectors must have a cutoff wavelength of less than about 270 nm. Semiconductor based devices would then need energy gaps of over 4.6 eV. In the AlxGa1-xN system, the aluminum mole fraction, x, required is over 40%. As the energy gap is increased, doping becomes much more difficult, especially p-type doping. This report is a study of the electrical properties of AlxGa1-xN to enable better control of the doping. Magnesium doped p-type AlxGa1-xN has been studied using high-temperature Hall effect measurements. The acceptor ionization energy has been found to increase substantially with the aluminum content. Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were also grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short- period superlattice structures instead of bulk-like AlGaN:Mg. Silicon doped n-type films have also been studied. [reprint (PDF)]
 
2.  Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal]
An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)]
 
2.  8-13 μm InAsSb heterojunction photodiode operating at near room temperature
J.D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, and M. Razeghi
Applied Physics Letters 67 (18)-- October 30, 1995 ...[Visit Journal]
p+-InSb/π-InAs1−xSbx/n+-InSb heterojunction photodiodes operating at near room temperature in the 8–13 μm region of infrared (IR) spectrum are reported. A room‐temperature photovoltaic response of up to 13 μm has been observed at 300 K with an x≊0.85 sample. The voltage responsivity‐area product of 3×10−5 V· cm²/W has been obtained at 300 K for the λ=10.6 μm optimized device. This was close to the theoretical limit set by the Auger mechanism, with a detectivity at room temperature of ≊1.5×108 cm ·Hz½/W. [reprint (PDF)]
 
2.  Growth and characterization of long wavelength infrared Type-II superlattice Photodiodes on a 3
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
SPIE Proceedings, San Francisco, CA (January 22-27, 2011), Vol. 7945, p. 79451O-- January 23, 2011 ...[Visit Journal]
One of the great advantages of Type-II InAs/GaSb superlattice over other competing technologies for the third generation infrared imagers is the potential to have excellent uniformity across a large area as the electronic structure of the material is controlled by the layer thicknesses, not by the composition of the materials. This can economize the material growth, reduce the fabrication cost, and especially allow the realization of large format imagers. In this talk, we report the molecular beam epitaxial growth of Type-II superlattices on a 3-inch GaSb substrate for long wavelength infrared detection. The material exhibits excellent structural, optical and electrical uniformity via AFM, Xray, quantum efficiency and I-V measurements. At 77K, 11μm cutoff photodiodes exhibit more than 45% quantum efficiency, and a dark current density of 1.0x10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6 x 1011 cm·Hz1/2/W. [reprint (PDF)]
 
2.  High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition
Donghai Wu , Quentin Durlin, Arash Dehzangi , Yiyun Zhang , and Manijeh Razeghi
Appl. Phys. Lett. 114, 011104-- January 8, 2019 ...[Visit Journal]
We report the growth and characterization of mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes on GaSb substrates grown by metal-organic chemical vapor deposition. At 150 K, the 50% cut-off wavelength is 5.0 um, the dark current density is 3.3x10−4 A/cm2 under −20mV bias, and the peak responsivity is 1.76A/W corresponding to a quantum efficiency of 55% without anti-reflection coating. A specific detectivity of 1.2x1011cmHz1/2/W is achieved at 4.0 um under −20mV bias at 150 K. [reprint (PDF)]
 
2.  Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAsSb/AlAsSb type–II superlattices
Abbas Haddadi, Arash Dehzangi, Romain Chevallier, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 7, Article number: 3379-- June 13, 2017 ...[Visit Journal]
Type–II superlattices (T2SLs) are a class of artificial semiconductors that have demonstrated themselves as a viable candidate to compete with the state–of–the–art mercury–cadmium–telluride material system in the field of infrared detection and imaging. Within type–II superlattices, InAs/InAs1−xSbx T2SLs have been shown to have a significantly longer minority carrier lifetime. However, demonstration of high–performance dual–band photodetectors based on InAs/InAs1−xSbx T2SLs in the long and very long wavelength infrared (LWIR & VLWIR) regimes remains challenging. We report the demonstration of high–performance bias–selectable dual–band long–wavelength infrared photodetectors based on new InAs/InAsSb/AlAsSb type–II superlattice design. Our design uses two different bandgap absorption regions separated by an electron barrier that blocks the transport of majority carriers to reduce the dark current density of the device. As the applied bias is varied, the device exhibits well–defined cut–off wavelengths of either ∼8.7 or ∼12.5 μm at 77 K. This bias–selectable dual–band photodetector is compact, with no moving parts, and will open new opportunities for multi–spectral LWIR and VLWIR imaging and detection. [reprint (PDF)]
 

Page 7 of 23:  Prev << 1 2 3 4 5 6 7  8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  >> Next  (569 Items)