Page 8 of 19:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19  >> Next  (465 Items)

2.  A Review of III-Nitride Research at the Center for Quantum Devices
M. Razeghi and R. McClintock
Journal of Crystal Growth, Vol. 311, No. 10-- May 1, 2009 ...[Visit Journal]
In this paper, we review the history of the Center for Quantum Devices’ (CQD) III-nitride research covering the past 15 years. We review early work developing III-nitride material growth. We then present a review of laser and light-emitting diode (LED) results covering everything from blue lasers to deep UV LEDs emitting at 250 nm. This is followed by a discussion of our UV photodetector research from early photoconductors all the way to current state of the art Geiger-mode UV single photon detectors. [reprint (PDF)]
 
2.  Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs/GaSb superlattices
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, P. Manurkar, S. Bogdanov and M. Razeghi
SPIE Proceedings, San Jose, CA Volume 7222-0W-- January 26, 2009 ...[Visit Journal]
Recent advances in the design and fabrication of Type-II InAs/GaSb superlattices allowed the realization of high performance long wavelength infrared focal plane arrays. The introduction of an Mstructure barrier between the n-type contact and the pi active region reduced the tunneling component of the dark current. The M-structure design improved the noise performance and the dynamic range of FPAs at low temperatures. At 81K, the NEDT of the focal plane array was 23 mK. The noise of the camera was dominated by the noise component due to the read out integrated circuit. At 8 µm, the median quantum efficiency of the detectors was 71%, mainly limited by the reflections on the backside of the array. [reprint (PDF)]
 
2.  Reliability of Aluminum-Free 808 nm High-Power Laser Diodes with Uncoated Mirrors
I. Eliashevich, J. Diaz, H. Yi, L. Wang, and M. Razeghi
Applied Physics Letters 66 (23)-- June 5, 1995 ...[Visit Journal]
The reliability of uncoated InGaAsP/GaAs high‐power diode lasers emitting at 808 nm wavelength has been studied. 47 W of quasicontinuous wave output power (pulse width 200 μs, frequency 20 Hz) have been obtained from a 1 cm wide laser bar. A single‐stripe diode without mirror coating has been life tested at 40 °C for emitting power of 800 mW continuous wave (cw) and showed no noticeable degradation and no change of the lasing wavelength after 6000 h of operation. [reprint (PDF)]
 
2.  Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency
A. Evans, S.R. Darvish, S. Slivken, J. Nguyen, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 91, No. 7, p. 071101-1-- August 13, 2007 ...[Visit Journal]
The authors report on the development of ~4.7 µm strain-balanced InP-based quantum cascade lasers with high wall plug efficiency and room temperature continuous-wave operation. The use of narrow-ridge buried heterostructure waveguides and thermally optimized packaging is presented. Over 9.3% wall plug efficiency is reported at room temperature from a single device producing over 0.675 W of continuous-wave output power. Wall plug efficiencies greater than 18% are also reported for devices at a temperature of 150 K, with continuous-wave output powers of more than 1 W. [reprint (PDF)]
 
2.  Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics & Technology Volume 113, March 2021, 103641 ...[Visit Journal]
In this study, a comprehensive analysis of the n-p-n infrared heterojunction phototransistors (HPTs)based on Type-II superlattices has been demonstrated. Different kinds of Type-II superlattices were carefully chosen for the emitter, base, and collector to improve the optical performance. The effects of different device parameters include emitter doping concentration, base doping concentration, base thickness and energy bandgap difference between emitter and base on the optical gain of the HPTs have been investigated. By scaling the base thickness to 20 nm, the HPT exhibits an optical gain of 345.3 at 1.6 μm at room temperature. For a 10 μm diameter HPT device, a −3 dB cut-off frequency of 5.1 GHz was achieved under 20 V at 150 K. [reprint (PDF)]
 
2.  Future of AlxGa1-xN Materials and Device Technology for Ultraviolet Photodetectors
P. Kung, A. Yasan, R. McClintock, S. Darvish, K. Mi, and M. Razeghi
SPIE Conference, San Jose, CA, Vol. 4650, pp. 199-- May 1, 2002 ...[Visit Journal]
Design of the photodetector structure is one of the key issues in obtaining high performance devices; especially the thickness of the intrinsic region for p-i-n photodiodes is a crucial value and needs to be optimized. We compare the performance of the p-i-n photodiodes with different widths for the depletion region, which shows a trade-off between speed and responsivity of the devices. [reprint (PDF)]
 
2.  InAsSb/InAsP strained-layer superlattice injection lasers operating at 4.0 μm grown by metal-organic chemical vapor deposition
B. Lane, Z. Wu, A. Stein, J. Diaz, and M. Razeghi
Applied Physics Letters 74 (23)-- June 7, 1999 ...[Visit Journal]
We report high power mid-infrared electrical injection operation of laser diodes based on InAsSb/InAsP strained-layer superlattices grown on InAs substrate by metal-organic chemical vapor deposition. The broad-area laser diodes with 100 μm aperture and 1800 μm cavity length demonstrate peak output powers of 546 and 94 mW in pulsed and cw operation respectively at 100 K with a threshold current density as low as 100 A/cm². [reprint (PDF)]
 
2.  High Quality Type-II InAs/GaSb Superlattices with Cutoff Wavelength ~3.7 µm Using Interface Engineering
Y. Wei, J. Bae, A. Gin, A. Hood, M. Razeghi, G.J. Brown, and M. Tidrow
Journal of Applied Physics, 94 (7)-- October 1, 2003 ...[Visit Journal]
We report the most recent advance in the area of Type-II InAs/GaSb superlattices that have cutoff wavelength of ~3.7 µm. With GaxIn1–x type interface engineering techniques, the mismatch between the superlattices and the GaSb (001) substrate has been reduced to <0.1%. There is no evidence of dislocations using the best examination tools of x-ray, atomic force microscopy, and transmission electron microscopy. The full width half maximum of the photoluminescence peak at 11 K was ~4.5 meV using an Ar+ ion laser (514 nm) at fluent power of 140 mW. The integrated photoluminescence intensity was linearly dependent on the fluent laser power from 2.2 to 140 mW at 11 K. The temperature-dependent photoluminescence measurement revealed a characteristic temperature of one T1 = 245 K at sample temperatures below 160 K with fluent power of 70 mW, and T1 = 203 K for sample temperatures above 180 K with fluent power of 70 and 420 mW. [reprint (PDF)]
 
2.  Room temperature continuous wave operation of λ ~ 3-3.2 μm quantum cascade lasers
N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 101, No. 24, p. 241110-1-- December 10, 2012 ...[Visit Journal]
We demonstrate quantum cascade lasers emitting at wavelengths of 3–3.2 μm in the InP-based material system. The laser core consists of GaInAs/AlInAs using strain balancing technique. In room temperature pulsed mode operation, threshold current densities of 1.66 kA∕cm² and 1.97 kA∕cm², and characteristic temperatures (T0) of 108 K and 102 K, are obtained for the devices emitting at 3.2 μm and 3 μm, respectively. Room temperature continuous wave operation is achieved at both wavelengths. [reprint (PDF)]
 
2.  High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
Donghai Wu, Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics &Technology 103439-- July 18, 2020 ...[Visit Journal]
By introducing a double barrier design, a high performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetector has been demonstrated. The photodetector exhibits a cut-off wavelength of ~4.50 µm at 150 K. At 150 K and −120 mV applied bias, the photodetector exhibits a dark current density of 1.21 × 10−5 A/cm2, a quantum efficiency of 45% at peak responsivity (~3.95 µm), and a specific detectivity of 6.9 × 1011 cm·Hz1/2/W. The photodetector shows background-limited operating temperature up to 160 K. [reprint (PDF)]
 
2.  Near bulk-limited R0A of long-wavelength infrared type-II InAs/GaSb superlattice photodiodes with polyimide surface passivation
Andrew Hood, Pierre-Yves Delaunay, Darin Hoffman, Binh-Minh Nguyen, Yajun Wei, Manijeh Razeghi, and Vaidya Nathan
Applied Physics Letters 90, 233513-- June 4, 2007 ...[Visit Journal]
Effective surface passivation of Type-II InAs/GaSb superlattice photodiodes with cutoff wavelengths in the long-wavelength infrared is presented. A stable passivation layer, the electrical properties of which do not change as a function of the ambient environment nor time, has been prepared by a solvent-based surface preparation, vacuum desorption, and the application of an insulating polyimide layer. Passivated photodiodes, with dimensions ranging from 400×400 to 25×25 µm2, with a cutoff wavelength of ~11 µm, exhibited near bulk-limited R0A values of ~12 Ω·cm2, surface resistivities in excess of 104 Ω·cm, and very uniform current-voltage behavior at 77 K. [reprint (PDF)]
 
2.  AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition
C. Bayram, Z. Vashaei and M. Razeghi
Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal]
AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)]
 
2.  Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020 ...[Visit Journal]
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. [reprint (PDF)]
 
2.  High Carrier Lifetime InSb Grown on GaAs Substrates
E. Michel, H. Mohseni, J.D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja
Applied Physics Letters 71 (8-- August 25, 1997 ...[Visit Journal]
We report on the growth of near bulklike InSb on GaAs substrates by molecular beam epitaxy despite the 14% lattice mismatch between the epilayer and the substrate. Structural, electrical, and optical properties were measured to assess material quality. X-ray full widths at half-maximum were as low as 55 arcsec for a 10 µm epilayer, peak mobilities as high as ~ 125 000 cm2/V s, and carrier lifetimes up to 240 ns at 80 K. [reprint (PDF)]
 
2.  Interface roughness scattering in thin, undoped GaInP/GaAs quantum wells
W. C. Mitchel, G.J. Brown, I. Lo, S. Elhamri, M. Aboujja, K. Ravindran, R.S. Newrock, M. Razeghi, and X. He
Applied Physics Letters 65 (12)-- September 19, 1994 ...[Visit Journal]
Electronic transport properties of very thin undoped GaInP/GaAs quantum wells have been measured by temperature dependent low field Hall effect and by Shubnikov–de Haas effect. Strong Shubnikov–de Haas oscillations were observed after increasing the electron concentration via the persistent photocurrent effect. Low temperature mobilities of up to 70 ,000 cm²/V· s at carrier concentrations of 6.5×1011 cm−2 were observed in a 20 Å quantum well. The results are compared with the theory of interface roughness scattering which indicates extremely smooth interfaces; however, discrepancies between experiment and theory are observed. [reprint (PDF)]
 
2.  Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates
C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi
Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal]
InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76  200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures.   [reprint (PDF)]
 
1.  Growth and Characterization of Type-II Non-Equilibrium Photovoltaic Detectors for Long Wavelength Infrared Range
H. Mohseni, J. Wojkowski, A. Tahraoui, M. Razeghi, G. Brown and W. Mitche
SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal]
Growth and characterization of type-II detectors for mid-IR wavelength range is presented. The device has a p-i-n structure is designed to operate in the non-equilibrium mode with low tunneling current. The active layer is a short period InAs/GaSb superlattice. Wider bandgap p-type AlSb and n-type InAs layers are used to facilitate the extraction of both electronics and holes from the active layer for the first time. The performance of these devices were compared to the performance of devices grown at the same condition, but without the AlSb barrier layers. The processed devices with the AlSb barrier show a peak responsivity of about 1.2 A/W with Johnson noise limited detectivity of 1.1 X 1011 cm·Hz½/W at 8 μm at 80 K at zero bias. The details of the modeling, growth, and characterizations will be presented. [reprint (PDF)]
 
1.  Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, Sl Slivken, and M. Razeghi
Applied Physics Letters, Vol. 97, No. 23, p. 231119-1-- December 6, 2010 ...[Visit Journal]
We demonstrate surface-grating distributed feedback quantum cascade lasers (QCLs) with a watt-level power output at 4.75 μm. A device with a 5 mm cavity length exhibits an output power of 1.1 W in room-temperature cw operation. Single-mode operation with a side mode suppression ratio of 30 dB is obtained in the working temperature of 15–105 °C. A double-lobed far field with negligible beam steering is observed. The significance of this demonstration lies in its simplicity and readiness to be applied to standard QCL wafers with the promise of high-power performances. [reprint (PDF)]
 
1.  Photovoltaic effects in GaN structures with p-n junction
X. Zhang, P. Kung, D. Walker, J. Piotrowski, A. Rogalski, A. Saxler, and M. Razeghi
Applied Physics Letters 67 (14)-- October 2, 1995 ...[Visit Journal]
Large-area GaN photovoltaic structures with p-n junctions have been fabricated using atmospheric pressure metalorganic chemical vapor deposition. The photovoltaic devices typically exhibit selective spectral characteristics with two narrow peaks of opposite polarity. This can be related to p-n junction connected back‐to‐back with a Schottky barrier. The shape of the spectral characteristic is dependent on the thickness of the n- and p-type regions. The diffusion length of holes in the n-type GaN region, estimated by theoretical modeling of the spectral response shape, was about 0.1 μm. [reprint (PDF)]
 
1.  Persistent photoconductivity in thin undoped GaInP/GaAs quantum wells
S. Elhamri, M. Ahoujja, K. Ravindran, D.B. Mast, R.S. Newrock, W.C. Mitchel, G.J. Brown, I. Lo, M. Razeghi and X. He
Applied Physics Letters 66 (2)-- January 9, 1995 ...[Visit Journal]
Persistent photoconductivity has been observed at low temperatures in thin, unintentionally doped GaInP/GaAs/GaInP quantum wells. The two‐dimensional electron gas was studied by low field Hall and Shubnikov–de Haas effects. After illumination with red light, the electron concentration increased from low 1011 cm−2 to more than 7×1011 cm−2 resulting in an enhancement of both the carrier mobility and the quantum lifetime. The persistent photocarriers cannot be produced by DX-like defects since the shallow dopant concentration in the GaInP layers is too low to produce the observed concentration. We suggest that the persistent carriers are produced by photoionization of deep intrinsic donors in the GaInP barrier layer. We also report observation of a parallel conduction path in GaInP induced by extended illumination. [reprint (PDF)]
 
1.  Tight-binding theory for the thermal evolution of optical band gaps in semiconductors and superlattices
S. Abdollahi Pour, B. Movaghar, and M. Razeghi
American Physical Review, Vol. 83, No. 11, p. 115331-1-- March 15, 2011 ...[Visit Journal]
A method to handle the variation of the band gap with temperature in direct band-gap III–V semiconductors and superlattices using an empirical tight-binding method has been developed. The approach follows closely established procedures and allows parameter variations which give rise to perfect fits to the experimental data. We also apply the tight-binding method to the far more complex problem of band structures in Type-II infrared superlattices for which we have access to original experimental data recently acquired by our group. Given the close packing of bands in small band-gap Type-II designs, k·p methods become difficult to handle, and it turns out that the sp3s* tight-binding scheme is a practical and powerful asset. Other approaches to band-gap shrinkage explored in the past are discussed, scrutinized, and compared. This includes the lattice expansion term, the phonon softening mechanism, and the electron-phonon polaronic shifts calculated in perturbation theory. [reprint (PDF)]
 
1.  Recent progress of widely tunable, CW THz sources based QCLs at room temperature
Manijeh Razeghi
Terahertz Science and Technology, Vol.10, No.4, pp. 87-151-- December 7, 2017 ...[Visit Journal]
The THz spectral region is of significant interest to the scientific community, but is one of the hardest regions to access with conventional technology. A wide range of compelling new applications are initiating a new revolution in THz technology, especially with regard to the development of compact and versatile devices for THz emission and detection. In this article, recent advances with regard to III-V semiconductor optoelectronics are explored with emphasis on how these advances will lead to the next generation of THz component technology [reprint (PDF)]
 
1.  III-Nitride Optoelectronic Devices: From ultraviolet detectors and visible emitters towards terahertz intersubband devices
M. Razeghi, C. Bayram, Z. Vashaei, E. Cicek and R. McClintock
IEEE Photonics Society 23rd Annual Meeting, November 7-10, 2010, Denver, CO, Proceedings, p. 351-352-- January 20, 2011 ...[Visit Journal]
III-nitride optoelectronic devices are discussed. Ultraviolet detectors and visible emitters towards terahertz intersubband devices are reported. Demonstration of single photon detection efficiencies of 33% in the ultraviolet regime, intersubband energy level as low as in the mid-infrared regime, and GaN-based resonant tunneling diodes with negative resistance of 67 Ω are demonstrated. [reprint (PDF)]
 
1.  Solar-blind AlGaN photodiodes with very low cutoff wavelength
D. Walker, V. Kumar, K. Mi, P. Sandvik, P. Kung, X.H. Zhang, and M. Razeghi
Applied Physics Letters 76 (4)-- January 24, 2000 ...[Visit Journal]
We report the fabrication and characterization of AlxGa1–xN photodiodes (x~0.70) grown on sapphire by low-pressure metalorganic chemical vapor deposition. The peak responsivity for –5 V bias is 0.11 A/W at 232 nm, corresponding to an internal quantum efficiency greater than 90%. The device response drops four orders of magnitude by 275 nm and remains at low response for the entire near-ultraviolet and visible spectrum. Improvements were made to the device design including a semitransparent Ni/Au contact layer and a GaN:Mg cap layer, which dramatically increased device response by enhancing the carrier collection efficiency. [reprint (PDF)]
 
1.  Optoelectronic Integrated Circuits (OEICs) for Next Generation WDM Communications
M. Razeghi and S. Slivken
SPIE Conference, Boston, MA, -- July 29, 2002 ...[Visit Journal]
This paper reviews some of the key enabling technologies for present and future optoelectronic intergrated circuits. This review concentrates mainly on technology for lasers, waveguides, modulators, and fast photodetectors as the basis for next generation communicatiosn systems. Emphasis is placed on intergrations of components and mass production of a generic intelligent tranciever. [reprint (PDF)]
 

Page 8 of 19:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19  >> Next  (465 Items)