About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 8 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
2. | Aluminum gallium nitride short-period superlattices doped with magnesium A. Saxler, W.C. Mitchel, P. Kung and M. Razeghi Applied Physics Letters 74 (14)-- April 9, 1999 ...[Visit Journal] Short-period superlattices consisting of alternating layers of GaN:Mg and AlGaN:Mg were grown by low-pressure organometallic vapor phase epitaxy. The electrical properties of these superlattices were measured as a function of temperature and compared to conventional AlGaN:Mg layers. It is shown that the optical absorption edge can be shifted to shorter wavelengths while lowering the acceptor ionization energy by using short-period superlattice structures instead of bulk-like AlGaN:Mg. [reprint (PDF)] |
2. | InP-based quantum-dot infrared photodetectors with high quantum efficiency and high temperature imaging S. Tsao, H. Lim, H. Seo, W. Zhang and M. Razeghi IEEE Sensors Journal, Vol. 8, No. 6, p. 936-941-- June 1, 2008 ...[Visit Journal] We report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metalorganic chemical vapor depositon. The detectivity was 6 x 1010cm·Hz1/2·W-1 at 150 K and a bias of 5 V with a peak detection wavelength around 4.0 micron and a quantum efficiency of 48%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature. A 320 x 256 middle wavelength infrared focal plane array operating at temperatures up to 200 K was also demonstrated. The focal plane array had 34 mA/W responsivity, 1.1% conversion efficiency, and noise equivalent temperature difference of 344 mK at 120 K operating temperature. [reprint (PDF)] |
2. | Thermal imaging based on high-performance InAs/InP quantum-dot infrared photodetector operating at high temperature M. Razeghi; H. Lim; S. Tsao; H. Seo; W. Zhang Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS.15-16:[4382251] (2007).-- October 21, 2007 ...[Visit Journal] We report a room temperature operating and high-performance InAs quantum-dot infrared photodetector on InP substrate and thermal imaging of 320times256 focal plane array based on this device up to 200 K. [reprint (PDF)] |
2. | High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi Nature Scientific Reports 6, Article number: 24144-- April 7, 2016 ...[Visit Journal] We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)] |
2. | Broadband monolithically-tunable quantum cascade lasers Wenjia Zhou, Ryan McClintock, Donghai Wu, Steven Slivken, Manijeh Razeghi Proc. SPIE 10540, Quantum Sensing and Nano Electronics and Photonics XV, 105400A-- January 26, 2018 ...[Visit Journal] Mid-infrared lasers, emitting in the spectral region of 3-12 μm that contain strong characteristic vibrational transitions of
many important molecules, are highly desirable for spectroscopy sensing applications. High efficiency quantum cascade lasers have been demonstrated with up to watt-level output power in the mid-infrared region. However, the wide wavelength tuning, which is critical for spectroscopy applications, is still largely relying on incorporating external
gratings, which have stability issues. Here, we demonstrate the development a monolithic, widely tunable quantum cascade laser source emitting between 6.1 and 9.2 μm through an on-chip integration of a sampled grating distributed
feedback tunable laser array with a beam combiner. A compact tunable laser system was built to drive the individual lasers within the array and coordinate the driving of the laser array to produce desired wavelength. A broadband spectral
measurement (520cm-1) of methane shows excellent agreement with Fourier transform infrared spectrometer measurement. Further optimizations have led to high performance monolithic tunable QCLs with up to 65 mW output
while delivering fundamental mode outputs. [reprint (PDF)] |
2. | Molecular Beam Epitaxial Growth of High Quality InSb E. Michel, G. Singh, S. Slivken, C. Besikci, P. Bove, I. Ferguson, and M. Razeghi Applied Physics Letters 65 (26)-- December 26, 1994 ...[Visit Journal] In this letter we report on the growth of high quality InSb by molecular beam epitaxy that has been optimized using reflection high energy electron diffraction. A 4.8 µm InSb layer grown on GaAs at a growth temperature of 395 °C and a III/V incorporation ratio of 1:1.2 had an x-ray rocking curve of 158 arcsec and a Hall mobility of 92,300 cm²·V−1 at 77 K. This is the best material quality obtained for InSb nucleated directly onto GaAs reported to date. [reprint (PDF)] |
2. | Demonstration of negative differential resistance in GaN/AlN resonant tunneling didoes at room temperature Z. Vashaei, C. Bayram and M. Razeghi Journal of Applied Physics, Vol. 107, No. 8, p. 083505-- April 15, 2010 ...[Visit Journal] GaN/AlN resonant tunneling diodes (RTD) were grown by metal-organic chemical vapor deposition (MOCVD) and negative differential resistance with peak-to-valley ratios as high as 2.15 at room temperature was demonstrated. Effect of material quality on RTDs’ performance was investigated by growing RTD structures on AlN, GaN, and lateral epitaxial overgrowth GaN templates. Our results reveal that negative differential resistance characteristics of RTDs are very sensitive to material quality (such as surface roughness) and MOCVD is a suitable technique for III-nitride-based quantum devices. [reprint (PDF)] |
2. | High Power 3-12 μm Infrared Lasers: Recent Improvements and Future Trends M. Razeghi, S. Slivken, A. Tahraoui, A. Matlis, and Y.S. Park Physica E: Low-Dimensional Systems and Nanostructures 11 (2-3)-- October 1, 2001 ...[Visit Journal] In this paper, we discuss the progress of quantum cascade lasers (QCLs) grown by gas-source molecular beam epitaxy. Room temperature QCL operation has been reported for lasers emitting between 5-11 μm, with 9-11 μm lasers operating up to 425 K. Laser technology for the 3-5 μm range takes advantage of a strain-balanced active layer design. We also demonstrate record room temperature peak output powers at 9 and 11 μm (2.5 and 1 W, respectively) as well as record low 80K threshold current densities (250 A/cm²) for some laser designs. Preliminary distributed feedback (DFB) results are also presented and exhibit single mode operation for 9 μm lasers at room temperature. [reprint (PDF)] |
2. | p-doped GaAs/Ga0.51In0.49P quantum well intersub-band photodetectors J. Hoff, X. He, M. Erdtmann, E. Bigan, M. Razeghi, and G.J. Brown Journal of Applied Physics 78 (3)-- August 1, 1995 ...[Visit Journal] Lattice‐matched p-doped GaAs–Ga0.51In0.49P quantum well intersub‐band photodetectors with three different well widths have been grown on GaAs substrates by metal‐organic chemical‐vapor deposition and fabricated into mesa structures. The photoresponse cutoff wavelength varies between 3.5 and 5.5 μm by decreasing the well width from 50 down to 25 Å. Dark current measurements as a function of temperature reveal activation energies for thermionic emission that closely correspond to measured cutoff wavelengths. Experimental results are in reasonable agreement with Kronig–Penney calculations. [reprint (PDF)] |
2. | Miniaturization: enabling technology for the new millennium M. Razeghi and H. Mohseni SPIE International Conference on Solid State Crystals, Zakopane, Poland, -- April 1, 2001 ...[Visit Journal] The history of semiconductor devices has been characterized by a constant drive toward lower dimensions in order to increase integration density, system functionality and performance. However, this is still far from being comparable with the performance of natural systems such as human brain. The challenges facing semiconductor technologies in the millennium will be to move toward miniaturization. The influence of this trend on the quantum sensing of infrared radiation is one example that is elaborated here. A new generation of infrared detectors has been developed by growing layers of different semiconductors with nanometer thicknesses. The resulted badgap engineered semiconductor has superior performance compared to the bulk material. To enhance this technology further, we plan to move from quantum wells to quantum wire and quantum dots. [reprint (PDF)] |
2. | Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken and M. Razeghi Applied Physics Letters, Vol. 97, No. 13-- September 27, 2010 ...[Visit Journal] An InP-based quantum cascade laser heterostructure emitting at 3.76 μm is grown with gas-source molecular beam epitaxy. The laser core is composed of strain balanced In0.76Ga0.24As/In0.26Al0.74As. Pulsed testing at room temperature exhibits a low threshold current density (1.5 kA/cm²) and high wall plug efficiency (10%). Room temperature continuous wave operation gives 6% wall plug efficiency with a maximum output power of 1.1 W. Continuous wave operation persists up to 95 °C. [reprint (PDF)] |
2. | Photoluminescence linewidth narrowing in Yb-doped GaN and InGaN thin films K. Dasari, J. Wang, W.M. Jadwisienczak, V. Dierolf, M. Razeghi, R. Palai Journal of Luminescence Volume 209, May 2019, Pages 237-243-- January 14, 2019 ...[Visit Journal] We report on photoluminescence (PL) properties of GaN, GaN:Yb, InGaN, and InGaN:Yb thin films grown on (0001) sapphire substrates by plasma assisted molecular beam epitaxy (MBE). X-ray diffraction pattern of the films confirms c-axis oriented growth. The concentration of Yb and In was obtained by X-ray photoelectron spectroscopy (XPS) and was found to be 5 (+/- 0.5) at.% and 30 (+/- 1.5) at.%, respectively. The GaN:Yb and InGaN:Yb thin films show a significant linewidth narrowing in PL spectra compared to GaN and InGaN thin films. This could be attributed to the reduction of the defect related non-radiative recombination paths and suppression of the structural defects and dislocations because of the in situ rare earth (Yb)-doping during the growth. The temperature dependent photoluminescence of GaN:Yb thin film follows the Varshni model, whereas InGaN:Yb film shows a complex S-shaped like behavior, which can be explained by the localization effect using the Band-Tail model. [reprint (PDF)] |
2. | The new oxide paradigm for solid state ultraviolet photodetectors D. J. Rogers, P. Bove, X. Arrateig, V. E. Sandana, F. H. Teherani, M. Razeghi, R. McClintock, E. Frisch, S. Harel, Proceedings Volume 10533, Oxide-based Materials and Devices IX; 105331P-- March 22, 2018 ...[Visit Journal] The bandgap of wurzite ZnO layers grown on 2 inch diameter c-Al2O3 substrates by pulsed laser deposition was engineered from 3.7 to 4.8 eV by alloying with Mg. Above this Mg content the layers transformed from single phase hcp to mixed hcp/fcc phase before becoming single phase fcc above a bandgap of about 5.5 eV. Metal-Semiconductor-Metal (MSM) photodetectors based on
gold Inter-Digitated-Transducer structures were fabricated from the single phase hcp layers by single step negative photolithography and then packaged in TO5 cans. The devices gave over 6 orders of magnitude of separation between dark and light signal with solar rejection ratios (I270 : I350) of over 3 x 105 and dark signals of 300 pA (at a bias of −5V). Spectral responsivities were engineered to fit the
“Deutscher Verein des Gas- und Wasserfaches” industry standard form and gave over two decade higher responsivities (14 A/W, peaked at 270 nm) than commercial SiC based devices. Homogeneous Ga2O3 layers were also grown on 2 inch diameter c-Al2O3 substrates by PLD. Optical transmission spectra were coherent with a bandgap that increased from 4.9 to 5.4 eV when film thickness was decreased from 825 to 145 nm. X-ray diffraction revealed that the films were of the β-Ga2O3 (monoclinic) polytype with strong (−201) orientation. β-Ga2O3 MSM photodetectors gave over 4 orders of magnitude of separation between dark and light signal (at −5V bias) with dark currents of 250 pA and spectral responsivities of up to 40 A/W (at -0.75V bias). It was found that the spectral responsivity peak position could be decreased from 250 to 230 nm by reducing film thickness from 825 to 145 nm. This shift in peak responsivity wavelength with film thickness (a) was coherent with the apparent bandgap shift that was observed in transmission spectroscopy for the same layers and (b) conveniently provides a coverage of the spectral region in which MgZnO layers show fcc/hcp phase mixing. [reprint (PDF)] |
2. | High power photonic crystal distributed feedback quantum cascade lasers emitting at 4.5 micron B. Gokden, S. Slivken and M. Razeghi SPIE Proceedings, San Francisco, CA (January 22-28, 2010), Vol. 7608, p. 760806-1-- January 22, 2010 ...[Visit Journal] Quantum cascade lasers possess very small linewidth enhancement factor, which makes them very prominent candidates for realization of high power, nearly diffraction limited and single mode photonic crystal distributed feedback broad area lasers in the mid-infrared frequencies. In this paper, we present room temperature operation of a two dimensional photonic crystal distributed feedback quantum cascade laser emitting at 4.5 µm. peak power up to ~0.9 W per facet is obtained from a 2 mm long laser with 100 µm cavity width at room temperature. The observed spectrum is single mode with a very narrow linewidth. Far-field profile has nearly diffraction limited single lobe with full width at half maximum of 3.5 degree normal to the facet. The mode selection and power output relationships are experimentally established with respect to different cavity lengths for photonic crystal distributed feedback quantum cascade lasers. [reprint (PDF)] |
2. | High-Performance Type-II InAs/GaSb Superlattice Photodiodes with Cutoff Wavelength Around 7 µm Y. Wei, A. Hood, H. Yau, V. Yazdanpanah, M. Razeghi, M.Z. Tidrow and V. Nathan Applied Physics Letters, 86 (9)-- February 28, 2005 ...[Visit Journal] We report the most recent result in the area of type-II InAs/GaSb superlattice photodiodes that have a cutoff wavelength around 7 µm at 77 K. Superlattice with a period of 40 Å lattice matched to GaSb was realized using GaxIn1–x type interface engineering technique. Compared with significantly longer period superlattices, we have reduced the dark current density under reverse bias dramatically. For a 3 µm thick structure, using sulfide-based passivation, the dark current density reached 2.6×10–5 A/cm2 at –3 V reverse bias at 77 K. At this temperature the photodiodes have R0A of 9300 Ω·cm2 and a thermally limited zero bias detectivity of 1×1012 cm·Hz½/W. The 90%–10% cutoff energy width was only 16.5 meV. The devices did not show significant dark current change at 77 K after three months storage in the atmosphere. [reprint (PDF)] |
2. | Phase-locked, high power, mid-infrared quantum cascade laser array W. Zhou, S. Slivken, and M. Razeghi Applied Physics Letters 112, 181106-- May 4, 2018 ...[Visit Journal] We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array. [reprint (PDF)] |
2. | Use of Sacrificial Zinc Oxide Template Layers for Epitaxial Lift-Off of Yttria-Stabilised Zirconia Thin Films D. J. Rogers, T. Maroutian, V. E. Sandana, P. Lecoeur, F. H. Teherani, P. Bove and M. Razeghi Proc. of SPIE 11687, 116872C (2021) ...[Visit Journal] 275 nm-thick Yttria-stabilised zirconia (YSZ) layers were grown on 240 nm-thick epitaxial (0002)-oriented ZnO buffer layers on c-sapphire substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) studies revealed high quality epitaxial growth with the YSZ having a preferential (111) orientation and a root mean square surface roughness of 1.4 nm over an area of 10 um x 10 um. The YSZ top surface was then temporary bonded to an Apiezon W wax carrier and the sample was immersed in 0.1M HCl so as to preferentially etch/dissolve away the ZnO underlayer and release of the YSZ from the sapphire substrate. XRD revealed only the characteristic (111) peak of YSZ after lift-off and thus confirmed both the dissolution of the ZnO and the preservation of the crystallographic integrity of the YSZ on the wax carrier. Optical and Atomic Force Microscopy revealed some buckling, roughening and cracking of the lifted YSZ, however, which was probably due to tensile epitaxial strain release. [reprint (PDF)] |
2. | Quantum cascade lasers that emit more light than heat Y. Bai, S. Slivken, S. Kuboya, S.R. Darvish and M. Razeghi Nature Photonics, February 2010, Vol. 4, p. 99-102-- February 1, 2010 ...[Visit Journal] For any semiconductor lasers, the wall plug efficiency, that is, the portion of the injected electrical energy that can be converted into output optical energy, is one of the most important figures of merit. A device with a higher wall plug efficiency has a lower power demand and prolonged device lifetime due to its reduced self-heating. Since its invention, the power performance of the quantum cascade laser has improved tremendously. However, although the internal quantum efficiency can be engineered to be greater than 80% at low temperatures, the wall plug efficiency of a quantum cascade laser has never been demonstrated above 50% at any temperature. The best wall plug efficiency reported to date is 36% at 120 K. Here, we overcome the limiting factors using a single-well injector design and demonstrate 53% wall plug efficiency at 40 K with an emitting wavelength of 5 µm. In other words, we demonstrate a quantum cascade laser that produces more light than heat. [reprint (PDF)] |
2. | High-speed free-space optical communications based on quantum cascade lasers and type-II superlattice detectors Stephen M. Johnson; Emily Dial; M. Razeghi Proc. SPIE 11288, Quantum Sensing and Nano Electronics and Photonics XVII, 1128814-- January 31, 2020 ...[Visit Journal] Free-space optical communications (FSOC) is a promising avenue for point-to-point, high-bandwidth, and high-security communication links. It has the potential to solve the “last mile” problem modern communication systems face, allowing for high-speed communication links without the expensive and expansive infrastructure required by fiber optic and
wireless technologies 1 . Although commercial FSOC systems currently exist, due to their operation in the near infrared and short infrared ranges, they are necessarily limited by atmospheric absorption and scattering losses 2 . Mid-infrared (MWIR) wavelengths are desirable for free space communications systems because they have lower atmospheric scattering losses compared to near-infrared communication links. This leads to increased range and link uptimes. Since this portion of the EM spectrum is unlicensed, link establishment can be implemented quickly. Quantum cascade lasers
(QCL) are ideal FSOC transmitters because their emission wavelength is adjustable to MWIR 3 . Compared to the typical VCSEL and laser diodes used in commercial NIR and SWIR FSOC systems, however, they require increased threshold and modulation currents 4 . Receivers based on type-II superlattice (T2SL) detectors are desired in FSOC for their low
dark current, high temperature operation, and band gap tunable to MWIR 5. In this paper, we demonstrate the implementation of a high-speed FSOC system using a QCL and a T2SL detector. [reprint (PDF)] |
2. | GaN p-i-n photodiodes with high visible-to-ultraviolet rejection ratio P. Kung, X. Zhang, D. Walker, A. Saxler, and M. Razeghi SPIE Conference, San Jose, CA, -- January 28, 1998 ...[Visit Journal] UV photodetectors are critical components in many applications, including UV astronomy, flame sensors, early missile threat warning and space-to-space communications. Because of the presence of strong IR radiation in these situations, the photodetectors have to be solar blind, i.e. able to detect UV radiation while not being sensitive to IR. AlxGa1-xN is a promising material system for such devices. AlxGa1-xN materials are wide bandgap semiconductors, with a direct bandgap whose corresponding wavelength can be continuously tuned from 200 to 365 nm. AlxGa1-xN materials are thus insensitive to visible and IR radiation whose wavelengths are higher than 365 nm. We have already reported the fabrication and characterization of AlxGa1-xN-based photoconductors with a cut-off wavelength tunable from 200 to 365 nm by adjusting the ternary alloy composition. Here, we present the growth and characterization of GaN p-i- n photodiodes which exhibit a visible-to-UV rejection ratio of 6 orders or magnitude. The thin films were grown by low pressure metalorganic chemical vapor deposition. Square mesa structures were fabricated using dry etching, followed by contact metallization. The spectral response, rejection ratio and transient response of these photodiodes is reported. [reprint (PDF)] |
2. | LEO of III-Nitride on Al2O3 and Si Substrates M. Razeghi, P. Kung, P. Sandvik, K. Mi, X. Zhang, V.P. Dravid, J. Freitas, and A. Saxler SPIE Conference, San Jose, CA, -- January 26, 2000 ...[Visit Journal] Lateral epitaxial overgrowth (LEO) has recently become the method of choice to reduce the density of dislocations in heteroepitaxial GaN thin films, and is thus expected to lead to enhanced performance devices. We present here the LEO growth and characterization of GaN films by low pressure metalorganic chemical vapor deposition. Various substrates were used, including basal plane sapphire and oriented Si substrates. The steps in the LEO growth technology will be briefly reviewed. The characterization results will be discussed in detail. The structural, electrical and optical properties of the films were assessed through scanning, atomic and transmission electron microscopy, x-ray diffraction, capacitance-voltage, deep level transient spectroscopy, photoluminescence, and scanning cathodoluminenscence measurements. Single-step and double- step LEO GaN was achieved on sapphire. Similarly high quality LEO grown GaN films were obtained on sapphire and silicon substrates. Clear and dramatic reduction in the density of defects are observed in LEO grown materials using the various characterization techniques mentioned previously. [reprint (PDF)] |
2. | Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices C. Bayram ; K. T. Shiu ; Y. Zhu ; C. W. Cheng ; D. K. Sadana ; F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; Y. Zhang ; S. Gautier ; C.-Y. Cho ; E. Cicek ; Z. Vashaei ; R. McClintock ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86260L (March 18, 2013)-- March 18, 2013 ...[Visit Journal] Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization. [reprint (PDF)] |
2. | Electrically pumped photonic crystal distributed feedback quantum cascade lasers Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal] We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature.
[reprint (PDF)] |
2. | Bias-selectable dual-band mid-/long-wavelength infrared photodetectors based on InAs/InAs1−xSbx type-II superlattices A. Haddadi, R. Chevallier, G. Chen, A. M. Hoang, and M. Razeghi Applied Physics Letters 106 , 011104-- January 8, 2015 ...[Visit Journal] A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10−7 A/cm² under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 1012 cm·Hz½·W-1 at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10−4 A/cm² under −150 mV
applied bias at 77 K, providing a specific detectivity value of 1.64 × 1011 cm·Hz½·W-1. [reprint (PDF)] |
2. | High Power 280 nm AlGaN Light Emitting Diodes Based on an Asymmetric Single Quantum Well K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, and M. Razeghi Applied Physics Letters, 84 (7)-- February 16, 2004 ...[Visit Journal] We demonstrate high-power AlGaN-based ultraviolet light-emitting diodes grown on sapphire with an emission wavelength of 280 nm using an asymmetric single-quantum-well active layer configuration on top of a high-quality AlGaN/AlN template layer. An output power of 1.8 mW at a pulsed current of 400 mA was achieved for a single 300 µm×300 µm diode. This device reached a high peak external quantum efficiency of 0.24% at 40 mA. An array of four diodes produced 6.5 mW at 880 mA of pulsed current. [reprint (PDF)] |
Page 8 of 27: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 >> Next (672 Items)
|