Page 8 of 24:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  >> Next  (581 Items)

2.  AlN/GaN double-barrier resonant tunneling diodes grown by metal-organic chemical vapor deposition
C. Bayram, Z. Vashaei and M. Razeghi
Applied Physics Letters, Vol. 96, No. 4, p. 042103-1-- January 25, 2010 ...[Visit Journal]
AlN/GaN double-barrier resonant tunneling diodes (RTDs) were grown by metal-organic chemical vapor deposition on sapphire. RTDs were fabricated via standard processing steps. RTDs demonstrate a clear negative differential resistance (NDR) at room temperature (RT). The NDR was observed around 4.7 V with a peak current density of 59 kA/cm² and a peak-to-valley ratio of 1.6 at RT. Dislocation-free material is shown to be the key for the performance of GaN RTDs. [reprint (PDF)]
 
2.  Roadmap of Semiconductor Infrared Lasers and Detectors for the 21st Century
M. Razeghi
SPIE Conference, San Jose, CA, -- January 27, 1999 ...[Visit Journal]
Since the first discovery, semiconductor infrared lasers and detectors have found many various applications in military, communications, medical, and industry sections. In this paper, the current status of semiconductor infrared lasers and detectors will be reviewed. Advantages and disadvantages of different methods and techniques is discussed later. Some basic physical limitations of current technology are studied and the direction to overcome these problems will be suggested. [reprint (PDF)]
 
2.  Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, Alexander Jaud and Manijeh Razeghi
Photonics 2020, 7(3), 68; https://doi.org/10.3390/photonics7030068-- September 3, 2020 ...[Visit Journal]
In this letter, we report the demonstration of a pBn planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices, using silicon ion-implantation to isolate the devices. At 77 K the photodetectors exhibited peak responsivity of 0.76 A/W at 3.8 µm, corresponding to a quantum efficiency, without anti-reflection coating, of 21.5% under an applied bias of +40 mV with a 100% cut-off wavelength of 4.6 µm. With a dark current density of 5.21 × 10−6 A/cm2, under +40 mV applied bias and at 77 K, the photodetector exhibited a specific detectivity of 4.95 × 1011 cm·Hz1/2/W. [reprint (PDF)]
 
2.  Solar-blind photodetectors and focal plane arrays based on AlGaN
R. McClintock, M. Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 955502-- August 25, 2015 ...[Visit Journal]
III-Nitride material system (AlGaInN) possesses unique optical, electrical and structural properties such as a wide tunable direct bandgap, inherent fast carrier dynamics; good carrier transport properties, high breakdown fields; and high robustness and chemical stability. Recent technological advances in the wide bandgap AlGaN portion of this material system have led to a renewed interest in ultraviolet (UV) photodetectors. These detectors find use in numerous applications in the defense, commercial and scientific arenas such as covert space-to-space communications, early missile threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy.1,2,3 Back illuminated detectors operating in the solar blind region are of special interest. Back illumination allows the detector to be hybridized to a silicon read-out integrated circuit, epi-side down, and still collect light through the back of the transparent sapphire substrate. This allows the realization of solar blind focal plane arrays (FPAs) for imaging applications. Solar-blind FPAs are especially important because of the near total absence of any background radiation in this region. In this talk, we will present our recent back-illuminated solar-blind photodetector, mini-array, and FPA results. By systematically optimizing the design of the structure we have realized external quantum efficiencies (EQE) of in excess of 89% for pixel-sized detectors. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. At the same time, the dark current remains below ~2 × 10-9 A/cm² even at 10 volts of reverse bias. The detector has a very sharp falloff starting at 275 with the UV-solar rejection of better than three orders of magnitude, and a visible rejection ratio is more than 6 orders of magnitude. This high performance photodetector design was then used as the basis of the realization of solar-blind FPA. We demonstrated a 320×256 FPA with a peak detection wavelength of 278nm. The operability of the FPA was better than 92%, and excellent corrected imaging was obtained. [reprint (PDF)]
 
2.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011 ...[Visit Journal]
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. [reprint (PDF)]
 
2.  Reliable High-Power Uncoated Al-free InGaAsP/GaAs Lasers for Cost-Sensitive Optical Communication and Processing Applications
M. Razeghi
SPIE Conference, Dallas, TX, -- November 4, 1997 ...[Visit Journal]
Unlike InP-based systems for long-distance communication applications, GaAs-based optoelectronic systems mostly for local-area network, optical interconnection or optical computing are very cost-sensitive because often these optoelectronic devices constitute most of the cost for these applications and fewer users share the cost. Thus besides technical issues, the processing cost should be addressed in the selection of materials and fabrication methods. We discuss a number of major advantages of Al-free InGaAsP/GaAs lasers for these applications, such as not coating- requirement, low cost, high long-term reliability, high performance. We discuss recent preliminary results of Al- free lasers as a first step toward these optoelectronic applications. [reprint (PDF)]
 
2.  High brightness angled cavity quantum cascade lasers
D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi
Applied Physics Letters 106, 091105-- March 6, 2015 ...[Visit Journal]
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. [reprint (PDF)]
 
2.  Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
Y. Bai, S.R. Darvish, S. Slivken, W. Zhang, A. Evans, J. Nguyen and M. Razeghi
Applied Physics Letters, Vol. 92, No. 10, p. 101105-1-- March 10, 2008 ...[Visit Journal]
We demonstrate quantum cascade lasers at an emitting wavelength of 4.6 µm, which are capable of room temperature, high power continuous wave (cw) operation. Buried ridge geometry with a width of 9.8 µm was utilized. A device with a 3 mm cavity length that was epilayer-down bonded on a diamond submount exhibited a maximum output power of 1.3 W at room temperature in cw operation. The maximum output power at 80 K was measured to be 4 W, with a wall plug efficiency of 27%. [reprint (PDF)]
 
2.  Low irradiance background limited type-II superlattice MWIR M-barrier imager
E.K. Huang, S. Abdollahi Pour, M.A. Hoang, A. Haddadi, M. Razeghi and M.Z. Tidrow
OSA Optics Letters (OL), Vol. 37, No. 11, p. 2025-2027-- June 1, 2012 ...[Visit Journal]
We report a type-II superlattice mid-wave infrared 320 × 256 imager at 81 K with the M-barrier design that achieved background limited performance (BLIP) and ∼99%operability. The 280 K blackbody’s photon irradiance was limited by an aperture and a band-pass filter from 3.6 μm to 3.8 μm resulting in a total flux of ∼5 × 1012 ph·cm−2·s−1. Under these low-light conditions, and consequently the use of a 13.5 ms integration time, the imager was observed to be BLIP thanks to a ∼5 pA dark current from the 27 μm wide pixels. The total noise was dominated by the photon flux and read-out circuit which gave the imager a noise equivalent input of ∼5 × 1010 ph·cm−2·s−1 and temperature sensitivity of 9 mK with F∕2.3 optics. Excellent imagery obtained using a 1-point correction alludes to the array’s uniform responsivity. [reprint (PDF)]
 
2.  High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144-- April 7, 2016 ...[Visit Journal]
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. [reprint (PDF)]
 
2.  Noise analysis in type-II InAs/GaSb focal plane arrays
P.Y. Delaunay and M. Razeghi
Journal of Applied Physics, Vol. 106, Issue 6, p. 063110-- September 15, 2009 ...[Visit Journal]
A long wavelength infrared focal plane array based on type-II InAs/GaSb superlattices was fabricated and characterized at 80 K. The noise equivalent temperature difference in the array was measured as low as 23 mK for an integration time of 0.129 ms. The noise behavior of the detectors was properly described by a model based on thermal, shot, read out integrated circuit, and photon noises. The noise of the imager was dominated by photon noise for photon fluxes higher than 1.8×1015 ph·s−1·cm−2. At lower irradiance, the imager was limited by the shot noise generated by the dark current or the noise of the testing system. The superlattice detector did not create 1/f noise for frequencies above 4 mHz. As a result, the focal plane array did not require frequent calibrations. [reprint (PDF)]
 
2.  High-quality MOCVD-grown heteroepitaxial gallium oxide growth on III-nitrides enabled by AlOx interlayer
Junhee Lee, Lakshay Gautam, and Manijeh Razeghi
Junhee Lee, Manijeh RazeghiAppl. Phys. Lett. 123, 151902 (2023) https://doi.org/10.1063/5.0170383 ...[Visit Journal]
We report high-quality Ga2O3 grown on an AlGaN/AlN/Sapphire in a single growth run in the same Metal Organic Chemical Vapor Deposition reactor with an AlOx interlayer at the Ga2O3/AlGaN interface. AlOx interlayer was found to enable the growth of single crystalline Ga2O3 on AlGaN in spite of the high lattice mismatch between the two material systems. The resulting nitride/oxide heterogenous heterostructures showed superior material qualities, which were characterized by structural, electrical, and optical characterization techniques. In particular, a significant enhancement of the electron mobility of the nitride/oxide heterogenous heterostructure is reported when compared to the individual electron mobilities of the Ga2O3 epilayer on the sapphire substrate and the AlGaN/AlN heterostructure on the sapphire substrate. This enhanced mobility marks a significant step in realizing the next generation of power electronic devices and transistors.
 
2.  III-Nitride avalanche photodiodes
R. McClintock, J.L. Pau, C. Bayram, B. Fain, P. Giedratis, M. Razeghi and M. Ulmer
SPIE Proceedings, San Jose, CA Volume 7222-0U-- January 26, 2009 ...[Visit Journal]
Research into avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing photodetectors to utilize low-noise impact ionization based gain, GaN APDs operating in Geiger mode can deliver gains exceeding 1×107. Thus with careful design, it becomes possible to count photons at the single photon level. In this paper we review the current state of the art in III-Nitride visible-blind APDs, and present our latest results regarding linear and Geiger mode III-Nitride based APDs. This includes novel device designs such as separate absorption and multiplication APDs (SAM-APDs). We also discuss control of the material quality and the critical issue of p-type doping - demonstrating a novel delta-doping technique for improved material quality and enhanced electric field confinement. The spectral response and Geiger-mode photon counting performance of these devices are then analyzed under low photon fluxes, with single photon detection capabilities being demonstrated. Other major technical issues associated with the realization of high-quality visible-blind Geiger mode APDs are also discussed in detail and future prospects for improving upon the performance of these devices are outlined. [reprint (PDF)]
 
2.  Electrically pumped photonic crystal distributed feedback quantum cascade lasers
Y. Bai, S.R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi
Applied Physics Letters, Vol. 91, No. 14, p. 141123-1-- October 1, 2007 ...[Visit Journal]
We demonstrate electrically pumped, room temperature, single mode operation of photonic crystal distributed feedback (PCDFB) quantum cascade lasers emitting at ~4.75 µm. Ridge waveguides of 100 µm width were fabricated with both PCDFB and Fabry-Pérot feedback mechanisms. The Fabry-Pérot device has a broad emitting spectrum and a double lobed far-field character. The PCDFB device, as expected, has primarily a single spectral mode and a diffraction limited far field characteristic with a full angular width at half maximum of 2.4°. This accomplishment represents the first step in power scaling of single mode, midinfrared laser diodes operating at room temperature. [reprint (PDF)]
 
2.  High efficiency quantum cascade laser frequency comb
Quanyong Lu, Donghai Wu, Steven Slivken & Manijeh Razeghi
Scientific Reports 7, Article number: 43806-- March 6, 2017 ...[Visit Journal]
An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. [reprint (PDF)]
 
2.  Recent Advances in LWIR Type-II InAs/GaSb Superlattice Photodetectors and Focal Plane Arrays at the Center for Quantum Devices
M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K. Huang, M.Z. Tidrow, and V. Nathan
IEEE Proceedings, Vol. 97, No. 6, p. 1056-1066-- June 1, 2009 ...[Visit Journal]
In recent years, Type-II InAs/GaSb superlattice photo-detectors have experienced significant improvements in material quality, structural designs, and imaging applications. They now appear to be a possible alternative to the state-of-the-art HgCdTe (MCT) technology in the long and very long wavelength infrared regimes. At the Center for Quantum Devices, we have successfully realized very high quantum efficiency, very high dynamic differential resistance R0A - product LWIR Type – II InAs/GaSb superlattice photodiodes with efficient surface passivation techniques. The demonstration of high quality LWIR Focal Plane Arrays that were 100 % fabricated in - house reaffirms the pioneer position of this university-based laboratory. [reprint (PDF)]
 
2.  Fabrication of GaN Nanotubular Material using MOCVD with an Aluminium Oxide Membrane
W.G. Jung, S.H. Jung, P. Kung, and M. Razeghi
Nanotechnology 17-- January 1, 2006 ...[Visit Journal]
GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200–250 nm and the wall thickness is about 40–50 nm. [reprint (PDF)]
 
2.  High power, low divergent, substrate emitting quantum cascade ring laser in continuous wave operation
D. H. Wu and M. Razeghi
APL Materials 5, 035505-- March 21, 2017 ...[Visit Journal]
We demonstrate a surface grating coupled substrate emitting quantum cascade ring laser with high power room temperature continuous wave operation at 4.64 μm μm . A second order surface metal/semiconductor distributed-feedback grating is used for in-plane feedback and vertical out-coupling. A device with 400 μm μm radius ring cavity exhibits an output power of 202 mW in room temperature continuous wave operation. Single mode operation with a side mode suppression ratio of 25 dB is obtained along with a good linear tuning with temperature. The far field measurement exhibits a low divergent concentric ring beam pattern with a lobe separation of ∼0.34°, which indicates that the device operates in fundamental mode (n = 1). [reprint (PDF)]
 
2.  Superlattice sees colder objects in two colors and high resolution
M. Razeghi
SPIE Newsroom-- February 10, 2012 ...[Visit Journal]
A special class of semiconductor material can now detect two wavebands of light with energies less than a tenth of an electron volt in high resolution using the same IR camera. [reprint (PDF)]
 
2.  High performance Type-II InAs/GaSb superlattices for mid, long, and very long wavelength infrared focal plane arrays
M. Razeghi, Y. Wei, A. Gin, A. Hood, V. Yazdanpanah, M.Z. Tidrow, and V. Nathan
SPIE Conference, Orlando, FL, Vol. 5783, pp. 86-- March 28, 2005 ...[Visit Journal]
We present our most recent results and review our progress over the past few years regarding InAs/GaSb Type-II superlattices for photovoltaic detectors and focal plane arrays. Empirical tight binding methods have been proven to be very effective and accurate in designing superlattices for various cutoff wavelengths from 3.7 µm up to 32 µm. Excellent agreement between theoretical calculations and experimental results has been obtained. High quality material growths were performed using an Intevac modular Gen II molecular beam epitaxy system. The material quality was characterized using x-ray, atomic force microscopy, transmission electron microscope and photoluminescence, etc. Detector performance confirmed high material electrical quality. Details of the demonstration of 256×256 long wavelength infrared focal plane arrays are presented. [reprint (PDF)]
 
2.  Type-II ‘M’ Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes
B-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown
SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64790S-1-10-- January 29, 2007 ...[Visit Journal]
In this work, an AlSb-containing Type-II InAs/GaSb superlattice, the so-called M-structure, is presented as a candidate for mid and long wavelength infrared detection devices. The effect of inserting an AlSb barrier in the GaSb layer is discussed and predicts many promising properties relevant to practical use. A good agreement between the theoretical calculation based on Empirical Tight Binding Method framework and experimental results is observed, showing the feasibility of the structure and its properties. A band gap engineering method without material stress constraint is proposed. [reprint (PDF)]
 
2.  Radiometric characterization of long-wavelength infrared type II strained layer superlattice focal plane array under low-photon irradiance conditions
J. Hubbs, V. Nathan, M. Tidrow, and M. Razeghi
Optical Engineering, Vol. 51, No. 6, p. 064002-1-- June 15, 2012 ...[Visit Journal]
We present the results of the radiometric characterization of an “M” structure long wavelength infrared Type-II strained layer superlattice(SLS) infrared focal plane array (IRFPA) developed by Northwestern University (NWU). The performance of the M-structure SLS IRFPA was radiometrically characterized as a function of photon irradiance, integration time, operating temperature, and detector bias. Its performance is described using standard figures of merit: responsivity, noise, and noise equivalent irradiance. Assuming background limited performance operation at higher irradiances, the detector quantum efficiency for the SLS detector array is approximately 57%. The detector dark density at 80 K is 142 μA∕cm², which represents a factor of seven reduction from previously measured devices. [reprint (PDF)]
 
2.  Gain and recombination dynamics in photodetectors made with quantum nanostructures: the quantum dot in a well and the quantum well
B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi
Virtual Journal of Nanoscale Science & Technology, Vol. 18, No. 14-- October 6, 2008 ...[Visit Journal][reprint (PDF)]
 
2.  Surface leakage reduction in narrow band gap type-II antimonide-based superlattice photodiodes
E.K. Huang, D. Hoffman, B.M. Nguyen, P.Y. Delaunay and M. Razeghi
Applied Physics Letters, Vol. 94, No. 5, p. 053506-1-- February 2, 2009 ...[Visit Journal]
Inductively coupled plasma (ICP) dry etching rendered structural and electrical enhancements on type-II antimonide-based superlattices compared to those delineated by electron cyclotron resonance (ECR) with a regenerative chemical wet etch. The surface resistivity of 4×105 Ω·cm is evidence of the surface quality achieved with ICP etching and polyimide passivation. By only modifying the etching technique in the fabrication steps, the ICP-etched devices with a 9.3 µm cutoff wavelength revealed a diffusion-limited dark current density of 4.1×10−6 A/cm2 and a maximum differential resistance at zero bias in excess of 5300 Ω·cm2 at 77 K, which are an order of magnitude better in comparison to the ECR-etched devices. [reprint (PDF)]
 
2.  Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices
P.Y. Delaunay, B.M. Nguyen, D. Hoffman, E.K. Huang, and M. Razeghi
IEEE Journal of Quantum Electronics, Vol. 45, No. 2, p. 157-162.-- February 1, 2009 ...[Visit Journal]
The recent introduction of a M-structure design improved both the dark current and R0A performances of Type-II InAs-GaSb photodiodes. A focal plane array fabricated with this design was characterized at 81 K. The dark current of individual pixels was measured between 1.1 and 1.6 nA, 7 times lower than previous superlattice FPAs. This led to a higher dynamic range and longer integration times. The quantum efficiency of detectors without antireflective coating was 74%. The noise equivalent temperature difference reached 23 mK, limited only by the performance of the testing system and the read out integrated circuit. Background limited performances were demonstrated at 81 K for a 300 K background. [reprint (PDF)]
 

Page 8 of 24:  Prev << 1 2 3 4 5 6 7 8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  >> Next  (581 Items)