About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 8 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
3. | Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, P.R. Bijjam, and R. McClintock Journal of ELECTRONIC MATERIALS, Vol. 43, No. 8, 2014-- August 1, 2014 ...[Visit Journal] Type II superlattices (T2SLs), a system of interacting multiquantum wells,were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system. [reprint (PDF)] |
3. | Active and passive infrared imager based on short-wave and mid-wave type-II superlattice dual-band detectors E.K. Huang, A. Haddadi, G. Chen, A.M. Hoang, and M. Razeghi Optics Letters, Vol. 38, no. 1, p. 22-24-- January 1, 2013 ...[Visit Journal] A versatile dual-band detector capable of active and passive use is demonstrated using short-wave (SW) and midwave(MW) IR type-II superlattice photodiodes. A bilayer etch-stop scheme is introduced for back-side-illuminated detectors, which enhanced the external quantum efficiency both in the SWIR and MWIR spectral regions. Temperature-dependent dark current measurements of pixel-sized 27 μm detectors found the dark current density
to be ~1 × 10-5 A/cm² for the ∼4.2 μm cutoff MWIR channel at 140 K. This corresponded to a reasonable imager noise equivalent difference in temperature of ∼49 mK using F∕2.3 optics and a 10 ms integration time (tint), which lowered to ∼13 mK at 110 K using tint 30 ms, illustrating the potential for high-temperature operation. The SWIR channel was found to be limited by readout noise below 150 K. Excellent imagery from the dual-band imager exemplifying pixel coincidence is shown. [reprint (PDF)] |
3. | Hybrid green LEDs with n-type ZnO substituted for N-type GaN in an inverted P-N junction F. Hosseini Teherani; M. Razeghi; D.J. Rogers; Can Bayram; R. McClintock LEOS Annual Meeting Conference Proceedings, LEOS '09. IEEE, [5343231] (2009) -- October 4, 2009 ...[Visit Journal] Recently, the GaN and ZnO materials systems have attracted considerable attention because of their use in a broad range of emerging applications including light-emitting diodes (LEDs) and solar cells. GaN and ZnO are similar materials with direct wide bandgaps, wurtzite crystal structure, high thermal stability and comparable thermal expansion coefficients, which makes them well suited for heterojunction fabrication. Two important advantages of GaN over ZnO are the reliable p-type doping and the mature know-how for bandgap engineering. Thus GaN-based LEDs can be made to emit from the deep UV right into the green through alloying with Al and In, respectively. The performance is not identical at all wavelengths, however, and the performance of InGaN-based green LEDs is still relatively poor. [reprint (PDF)] |
3. | High power frequency comb based on mid-infrared quantum cascade laser at λ ~9μm Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori Appl. Phys. Lett. 106, 051105-- February 2, 2015 ...[Visit Journal] We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm−1 and a high power output of 180 mW for ∼176 comb modes. [reprint (PDF)] |
3. | High power broad area quantum cascade lasers Y. Bai, S. Slivken, S.R. Darvish, A. Haddadi, B. Gokden and M. Razeghi Applied Physics Letters, Vol. 95, No. 22, p. 221104-1-- November 30, 2009 ...[Visit Journal] Broad area quantum cascade lasers (QCLs) are studied with ridge widths up to 400 µm, in room temperature pulsed mode operation at an emission wavelength around 4.45 µm. The peak output power scales linearly with the ridge width. A maximum total peak output power of 120 W is obtained from a single 400-µm-wide device with a cavity length of 3 mm. A stable far field emission characteristic is observed with dual lobes at ±38° for all tested devices, which suggests that these broad area QCLs are highly resistant to filamentation. [reprint (PDF)] |
3. | Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011 ...[Visit Journal] We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow
linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW.
The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. [reprint (PDF)] |
3. | Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, Alexander Jaud and Manijeh Razeghi Photonics 2020, 7(3), 68; https://doi.org/10.3390/photonics7030068-- September 3, 2020 ...[Visit Journal] In this letter, we report the demonstration of a pBn planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices, using silicon ion-implantation to isolate the devices. At 77 K the photodetectors exhibited peak responsivity of 0.76 A/W at 3.8 µm, corresponding to a quantum efficiency, without anti-reflection coating, of 21.5% under an applied bias of +40 mV with a 100% cut-off wavelength of 4.6 µm. With a dark current density of 5.21 × 10−6 A/cm2, under +40 mV applied bias and at 77 K, the photodetector exhibited a specific detectivity of 4.95 × 1011 cm·Hz1/2/W. [reprint (PDF)] |
3. | Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier A. Haddadi, R. Chevallier, A. Dehzangi, and M. Razeghi Applied Physics Letters 110, 101104-- March 8, 2017 ...[Visit Journal] Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate have been demonstrated. An AlAsSb/GaSb H-structure superlattice design was used as the large-bandgap electron-barrier in these photodetectors. The photodetector is designed to have a 100% cut-off wavelength of ∼2.8 μm at 300 K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.65 A/W at 1.9 μm, corresponding to a quantum efficiency of 41% at zero bias under front-side illumination, without any anti-reflection coating. With an R × A of 78 Ω·cm² and a dark current density of 8 × 10−3 A/cm² under −400 mV applied bias at 300 K, the nBn photodetector exhibited a specific detectivity of 1.51 × 1010 Jones. At 150 K, the photodetector exhibited a dark current density of 9.5 × 10−9 A/cm² and a quantum efficiency of 50%, resulting in a detectivity of 1.12 × 1013 Jones. [reprint (PDF)] |
3. | SOLID-STATE DEEP UV EMITTERS/DETECTORS: Zinc oxide moves further into the ultraviolet David J. Rogers; Philippe Bove; Eric V. Sandana; Ferechteh Hosseini Teherani; Ryan McClintock; Manijeh Razeghi Laser Focus World. 2013;49(10):33-36.-- October 10, 2013 ...[Visit Journal] Latest advancements in the alloying of zinc oxide (ZnO) with magnesium (Mg) can offer an alternative to (Al) GaN-based emitters/detectors in the deep UV with reduced lattice and efficiency issues. The emerging potential of ZnO for UV emitter and detector applications is the result of a long, concerted, and fruitful R&D effort that has led to more than 7000 publications in 2012. ZnO is considered to be a potentially superior material for use in LEDs and laser diodes due to its larger exciton binding energy, as compared with 21 meV for GaN. Wet etching is also possible for ZnO with nearly all dilute acids and alkalis, while GaN requires hydrofluoric (HF) acid or plasma etching. High-quality ZnO films can be grown more readily on mismatched substrates and bulk ZnO substrates have better availability than their GaN equivalents. |
3. | InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection A. Haddadi , G. Chen , R. Chevallier , A. M. Hoang , and M. Razeghi Appl. Phys. Lett. 105, 121104 (2014)-- September 22, 2014 ...[Visit Journal] High performance long-wavelength infrared nBn photodetectors based on InAs/InAs1−xSbx type-II superlattices on GaSb substrate have been demonstrated. The photodetector's 50% cut-off wavelength was ∼10 μm at 77 K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at −90 mV bias voltage under front-side illumination and without any anti-reflection coating. With an R × A of 119 Ω·cm² and a dark current density of 4.4 × 10−4 A/cm² under −90 mV applied bias at 77 K, the photodetector exhibited a specific detectivity of 2.8 × 1011 cm·Hz1/2·W-1. [reprint (PDF)] |
3. | Stable single mode terahertz semiconductor sources at room temperature M. Razeghi 2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011 ...[Visit Journal] Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. [reprint (PDF)] |
3. | Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, R. McClintock, C. Bayram, M. Razeghi, H-J Drouhin, M.C. Clochard, V. Sallett, G. Garry, and F. Falyouni Journal of Vacuum Science and Technology B, Vol. 27, No. 3, May/June, p. 1678-1683-- May 29, 2009 ...[Visit Journal] This article compares the forms and properties of ZnO nanostructures grown on Si (111) and c-plane
sapphire (c-Al2O3) substrates using three different growth processes: metal organic chemical vapor
deposition (MOCVD), pulsed laser deposition (PLD), and physical vapor transport (PVT). A very
wide range of ZnO nanostructures was observed, including nanorods, nanoneedles, nanocombs, and
some novel structures resembelling “bevelled” nanowires. PVT gave the widest family of
nanostructures. PLD gave dense regular arrays of nanorods with a preferred orientation
perpendicular to the substrate plane on both Si and c-Al2O3 substrates, without the use of a catalyst.
X-ray diffraction (XRD) studies confirmed that nanostructures grown by PLD were better
crystallized and more highly oriented than those grown by PVT and MOCVD. Samples grown on
Si showed relatively poor XRD response but lower wavelength emission and narrower linewidths in
PL studies. [reprint (PDF)] |
3. | High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi Appl. Phys. Lett. 116, 161108-- April 21, 2020 ...[Visit Journal] We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. [reprint (PDF)] |
3. | Determination of of Band Gap Energy of Al1-xInxN Grown by Metal Organic Chemical Vapor Deposition in the High Al Composition Regime K.S. Kim, A. Saxler, P. Kung, M. Razeghi, and K.Y. Lim Applied Physics Letters 71 (6)-- August 11, 1997 ...[Visit Journal] Ternary AlInN was grown by metal–organic chemical-vapor deposition in the high Al composition regime. The band-gap energy of AlInN ternary was measured by optical absorption spectroscopy at room temperature. The band-gap energy of Al0.92In0.08N is 5.26 eV. The potential application of AlInN as a barrier material for GaN is also discussed. [reprint (PDF)] |
3. | Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices C. Bayram ; K. T. Shiu ; Y. Zhu ; C. W. Cheng ; D. K. Sadana ; F. H. Teherani ; D. J. Rogers ; V. E. Sandana ; P. Bove ; Y. Zhang ; S. Gautier ; C.-Y. Cho ; E. Cicek ; Z. Vashaei ; R. McClintock ; M. Razeghi Proc. SPIE 8626, Oxide-based Materials and Devices IV, 86260L (March 18, 2013)-- March 18, 2013 ...[Visit Journal] Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our results suggest that groove structures are very promising for controlled local epitaxy of cubic phase GaN. Overall, it is concluded that there are significant opportunities for cost reduction in novel hybrid diodes based on ZnO-InGaN-Si hybridization. [reprint (PDF)] |
3. | Nitrides push performance of UV photodiodes Can Bayram; Manijeh Razeghi Laser Focus World. 45(9), pp. 47-51 (2009)-- September 1, 2009 ...[Visit Journal] The nitrides are known to be useful for creating the UV single-photon detectors with efficiencies of 20%, with its considerable advantages that could further enable quantum computing and data encryption. Such detectors would be well suited for numerous applications in the defense, commercial, and scientific arenas, including covert space-to-space communications, early missile-threat detection, chemical and biological threat detection and spectroscopy. The use of SAM regions is a common approach to reducing multiplication noise and enhancing gain through impact-ionization engineering that could benefit from the higher ionization coefficient by offering lower noise performance and higher gain. The ADPs also enables the realization of single-photon detection by using Geiger-mode operation, which entails operating the ADPs well above the breakdown voltage and using pulse-quenching circuitry. |
3. | Intersubband hole absorption in GaAs-GaInP Quantum Wells grown by Gas Source Molecular Beam Epitaxy J. Hoff, C. Jelen, S. Slivken, E. Michel, O. Duchemin, E. Bigan, and M. Razeghi with G. Brown and S.M. Hegde (Wright Laboratory) Applied Physics Letters 65 (9)-- August 29, 1994 ...[Visit Journal] P-doped GaAs‐GaInP quantum wells have been grown on GaAs substrate by gas source molecular beam epitaxy. Structural quality has been evidenced by x-ray diffraction. A narrow low-temperature photoluminescence full width at half‐maximum has been measured. Strong hole intersubband absorption has been observed at 9 μm, and its dependence on light polarization has been investigated. [reprint (PDF)] |
3. | Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi Opt. Express 23, 21159-21164 -- August 10, 2015 ...[Visit Journal] A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. [reprint (PDF)] |
3. | Quantum Dot Infrared Photodetectors: Comparison Experiment and Theory H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, and M. Razeghi Virtual Journal of Nanoscale Science and Technology 12 (9)-- August 29, 2005 ...[Visit Journal][reprint (PDF)] |
3. | High-Performance InP-Based Mid-IR Quantum Cascade Lasers M. Razeghi IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 3, May-June 2009, p. 941-951.-- June 5, 2009 ...[Visit Journal] Quantum cascade lasers (QCLs) were once considered
as inefficient devices, as the wall-plug efficiency (WPE) was merely a few percent at room temperature. But this situation has changed in the past few years, as dramatic enhancements to the output
power andWPE have been made for InP-based mid-IR QCLs. Room temperature continuous-wave (CW) output power as high as 2.8 W and WPE as high as 15% have now been demonstrated for individual devices. Along with the fundamental exploration of refining the design and improving the material quality, a consistent determination of important device performance parameters allows for strategically addressing each component that can be improved
potentially. In this paper, we present quantitative experimental evidence backing up the strategies we have adopted to improve the WPE for QCLs with room temperature CW operation. [reprint (PDF)] |
3. | Anomalous Hall Effect in InSb Layers Grown by MOCVD on GaAs Substrates C. Besikci, Y.H. Choi, R. Sudharsanan, and M. Razeghi Journal of Applied Physics 73 (10)-- May 15, 1993 ...[Visit Journal] InSb epitaxial layers have been grown on GaAs substrates by low‐pressure metalorganic chemical vapor deposition. A 3.15 μm thick film yielded an x‐ray full width at half maximum of 171 arcsec. A Hall mobility of 76 200 cm²/V· s at 240 K and a full width at half maximum of 174 arcsec have been measured for a 4.85 μm thick epilayer. Measured Hall data have shown anomalous behavior. A decrease in Hall mobility with decreasing temperature has been observed and room‐temperature Hall mobility has increased with thickness. In order to explain the anomalous Hall data, and the thickness dependence of the measured parameters, the Hall coefficient and Hall mobility have been simulated using a three‐layer model including a surface layer, a bulklike layer, and an interface layer with a high density of defects. Theoretical analysis has shown that anomalous behavior can be attributed to donor-like defects caused by the large lattice mismatch and to a surface layer which dominates the transport in the material at low temperatures. [reprint (PDF)] |
3. | Effect of the spin split-off band on optical absorption in p-type Ga1 xInxAsyP1-y quantum-well infrared detectors J.R. Hoff, M. Razeghi and G. Brown Physical Review B 54 (15)-- October 15, 1996 ...[Visit Journal] Experimental investigations of p-type Ga1-xInxAsyP1-y quantum-well intersubband photodetectors (QWIP’s) led to the discovery of unique features in photoresponse spectra of these devices. In particular, the strong 2–5 μm photoresponse of these QWIP’s was not anticipated based on previous experimental and theoretical results for p-type GaAs/AlxGa1-xAs QWIP’s. Our theoretical modeling of p-type QWIP’s based on the Ga1-xInxAsyP1-y system revealed that the intense short-wavelength photoresponse was due to a much stronger coupling to the spin-orbit split-off components in the continuum than occurs for GaAs/AlxGa1-xAs QWIP’s. Due to the strong influence of the spin split-off band, an eight-band Kane Hamiltonian was required to accurately model the measured photoresponse spectra. This theoretical model is first applied to a standard p-type GaAs/Al0.3Ga0.7As QWIP, and then to a series of GaAs/Ga0.51In0.49P, GaAs/Ga0.62In0.38As0.22P0.78, Ga0.79In0.21As0.59P0.41/Ga0.51In0.49P, and Ga0.79In0.21As0.59P0.41/Ga0.62In0.38As0.22P0.78 QWIP’s. Through this analysis, the insignificance of spin split-off absorption in GaAs/AlxGa1-xAs QWIP’s is verified, as is the dual role of light-hole extended-state and spin split-off hole-extended-state absorption on the spectral shape of Ga1-xInxAsyP1-y QWIP’s. [reprint (PDF)] |
3. | High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011 ...[Visit Journal] Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. [reprint (PDF)] |
3. | Polarity inversion of Type-II InAs/GaSb superlattice photodiodes B.M. Nguyen, D. Hoffman, P.Y. Delaunay, M. Razeghi and V. Nathan Applied Physics Letters, Vol. 91, No. 10, p. 103503-1-- September 3, 2007 ...[Visit Journal] The authors demonstrated the realization of p-on-n Type-II InAs/GaSb superlattice photodiodes. Growth condition for high quality InAsSb layer lattice matched to GaSb was established for the use of an effective n-contact layer. By studying the effect of various GaSb capping layer thicknesses on the optical and electrical performances, an optimized thickness of 160 nm was determined. In comparison to as grown n-on-p superlattice photodiodes, this inverted design of p on n has shown similar quality. Finally, by analyzing Fabry-Perot interference fringes in the front side illuminated spectral measurement, the refractive index of the superlattice was determined to be approximately 3.8. [reprint (PDF)] |
3. | Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden & M. Razeghi Proc. SPIE 11687 (2021) 116872D-1 ...[Visit Journal] Ga2O3layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3(monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. [reprint (PDF)] |
Page 8 of 28: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 >> Next (676 Items)
|