Publications by    
Page 1 of 31:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  >> Next  (759 Items)

1.  
High-brightness LWIR quantum cascade lasers
High-brightness LWIR quantum cascade lasers
F. Wang, S. Slivken, and M. Razeghi
Optics Letters, vol. 46, No. 20, 5193
Long-wave infrared (LWIR, lambda~8-12 um) quantum cascade lasers (QCLs) are drawing increasing interest, as they provide the possibility of long-distance transmission of light through the atmosphere owing to the reduced water absorption. However, their development has been lagging behind the shorter wavelength QCLs due to much bigger technological challenges. In this Letter, through band structure engineering based on a highly localized diagonal laser transition strategy and out-coupler design using an electrically isolated taper structure, we demonstrate high beam quality single-mode LWIR QCLs with high-brightness (2.0 MW cm-2 sr-1 for lambda~10 um, 2.2 MW cm-2 sr-1 for lambda~9 um, 5.0 MW cm-2 sr-1 for lambda~8 um) light extraction from a single facet in continuous-wave operation at 15 oC. These results mark an important milestone in exploring the lighting capability of inter-sub-band semiconductor lasers in the LWIR spectral range.
 
2.  
Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice
Low Noise Short Wavelength Infrared Avalanche Photodetector Using SB-Based Strained Layer Superlattice
Arash Dehzangi, Jiakai Li, Manijeh Razeghi
Photonics 2021, 8(5), 148; https://doi.org/10.3390/photonics8050148 Received: 8 March 2021 / Revised: 12 April 2021 / Accepted: 25 April 2021 / Published: 30 April 2021
We demonstrate low noise short wavelength infrared (SWIR) Sb-based type II superlattice (T2SL) avalanche photodiodes (APDs). The SWIR GaSb/(AlAsSb/GaSb) APD structure was designed based on impact ionization engineering and grown by molecular beam epitaxy on a GaSb substrate. At room temperature, the device exhibits a 50% cut-off wavelength of 1.74 µm. The device was revealed to have an electron-dominated avalanching mechanism with a gain value of 48 at room temperature. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. Low excess noise, as characterized by a carrier ionization ratio of ~0.07, has been achieved. reprint
 
3.  
High Thermal Stability of κ-Ga2O3 Grown by MOCVD
High Thermal Stability of κ-Ga2O3 Grown by MOCVD
Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi
Lee, J.; Kim, H.; Gautam, L.; Razeghi, M. High Thermal Stability of κ-Ga2O3 Grown by MOCVD. Crystals 2021, 11, 446. https://doi.org/ 10.3390/cryst11040446
We report a high thermal stability of kappa gallium oxide grown on c-plane sapphire substrate by metal organic chemical vapor deposition. Kappa gallium oxide is widely known as a metastable polymorph transitioning its phase when subjected to a high temperature. Here, we show the kappa gallium oxide whose phase is stable in a high temperature annealing process at 1000 °C. These oxide films were grown at 690 °C under nitrogen carrier gas. The materials showed high electrical resistivity when doped with silicon, whereas the film conductivity was significantly improved when doped with both indium and silicon. This work provides a pathway to overcoming limitations for the advance in utilizing kappa gallium oxide possessing superior electrical characteristics. reprint
 
4.  
Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Harmonic injection locking of high-power mid-infrared quantum cascade lasers
Feihu Wang, Steven Slivken, and Manijeh Razeghi
OSA Photonics Research •https://doi.org/10.1364/PRJ.423573
High-power, high-speed quantum cascade lasers (QCLs) with stable emission in the mid-infrared regime are of great importance for applications in metrology, telecommunication, and fundamental tests of physics. Owing to the inter-sub-band transition, the unique ultrafast gain recovery time of the QCL with picosecond dynamics is expected to overcome the modulation limit of classical semiconductor lasers and bring a revolution for the next generation of ultrahigh-speed optical communication. Therefore, harmonic injection locking, offering the possibility to fast modulate and greatly stabilize the laser emission beyond the rate limited by cavity length, is inherently adapted to QCLs. In this work, we demonstrate for the first time the harmonic injection locking of a mid-infrared QCL with an output power over 1 watt in continuous-wave operation at 288 K. Compared with an unlocked laser, the inter-mode spacing fluctuation of an injection locked QCL can be considerably reduced by a factor above 1×10 E3, which permits the realization of an ultra-stable mid-infrared semiconductor laser with high phase coherence and frequency purity. Despite temperature change, this fluctuation can be still stabilized to hertz level by a microwave modulation up to ∼18 GHz. These results open up the prospect of the applications of mid-infrared QCL technology for frequency comb engineering, metrology and the next generation ultrahigh-speed telecommunication. It may also stimulate new schemes for exploring ultrafast mid-infrared pulse generation in QCLs. reprint
 
5.  
Mid‑wavelength infrared avalanche  photodetector with AlAsSb/GaSb  superlattice
Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice
Jiakai Li, Arash Dehzangi, Gail Brown, Manijeh Razeghi
Scientifc Reports | (2021) 11:7104 | https://doi.org/10.1038/s41598-021-86566-8
In this work, a mid-wavelength infrared separate absorption and multiplication avalanche photodiode (SAM-APD) with 100% cut-of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb-based SAM-APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi-quantum well structure based on AlAsSb/GaSb H-structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under -14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM-APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefficients were derived and the large difference between their value was observed. The carrier ionization ratio for the MWIR SAM-APD device was calculated to be ~ 0.097 at 200 K. reprint
 
6.  
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
Sharp/Tuneable UVC Selectivity and Extreme Solar Blindness in Nominally Undoped Ga2O3 MSM Photodetectors Grown by Pulsed Laser Deposition
D. J. Rogers, A. Courtois, F. H. Teherani, V. E. Sandana, P. Bove, X. Arrateig, L. Damé, P. Maso, M. Meftah, W. El Huni, Y. Sama, H. Bouhnane, S. Gautier, A. Ougazzaden, M. Razeghi
Proc. SPIE 11687, Oxide-based Materials and Devices XII, 116872D (24 March 2021); doi: 10.1117/12.2596194
Ga2O3 layers were grown on c-sapphire substrates by pulsed laser deposition. Optical transmission spectra were coherent with a bandgap engineering from 4.9 to 6.2 eV controlled via the growth conditions. X-ray diffraction revealed that the films were mainly β-Ga2O3 (monoclinic) with strong (-201) orientation. Metal-Semiconductor-Metal photodetectors based on gold/nickel Inter- Digitated-Transducer structures were fabricated by single-step negative photolithography. 240 nm peak response sensors gave over 2 orders-of-magnitude of separation between dark and light signal with state-of-the-art solar and visible rejection ratios ((I240 : I290) of > 3 x 105 and (I240 : I400) of > 2 x 106) and dark signals of <50 pA (at a bias of -5V). Spectral responsivities showed an exceptionally narrow linewidth (16.5 nm) and peak values exhibited a slightly superlinear increase with applied bias up to a value of 6.5 A/W (i.e. a quantum efficiency of > 3000%) at 20V bias. reprint
 
7.  
Highly Conductive Co-Doped Ga2O3Si-In Grown by MOCVD
Highly Conductive Co-Doped Ga2O3Si-In Grown by MOCVD
Junhee Lee, Honghyuk Kim, Lakshay Gautam and Manijeh Razeghi
Coatings 2021, 11(3), 287; https://doi.org/10.3390/coatings11030287
We report a highly conductive gallium oxide doped with both silicon and indium grown on c-plane sapphire substrate by MOCVD. From a superlattice structure of indium oxide and gallium oxide doped with silicon, we obtained a highly conductive material with an electron hall mobility up to 150 cm2/V·s with the carrier concentration near 2 × 1017 cm−3. However, if not doped with silicon, both Ga2O3:In and Ga2O3 are highly resistive. Optical and structural characterization techniques such as X-ray, transmission electron microscope, and photoluminescence, reveal no significant incorporation of indium into the superlattice materials, which suggests the indium plays a role of a surfactant passivating electron trapping defect levels. reprint
 
8.  
Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Performance analysis of infrared heterojunction phototransistors based on Type-II superlattices
Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics & Technology Volume 113, March 2021, 103641
In this study, a comprehensive analysis of the n-p-n infrared heterojunction phototransistors (HPTs)based on Type-II superlattices has been demonstrated. Different kinds of Type-II superlattices were carefully chosen for the emitter, base, and collector to improve the optical performance. The effects of different device parameters include emitter doping concentration, base doping concentration, base thickness and energy bandgap difference between emitter and base on the optical gain of the HPTs have been investigated. By scaling the base thickness to 20 nm, the HPT exhibits an optical gain of 345.3 at 1.6 μm at room temperature. For a 10 μm diameter HPT device, a −3 dB cut-off frequency of 5.1 GHz was achieved under 20 V at 150 K. reprint
 
9.  
Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice
Arash Dehzangi, Jiakai Li and Manijeh Razeghi
Light: Science & Applications volume 10, Article number: 17 (2021) https://doi.org/10.1038/s41377-020-00453-x
The LWIR and longer wavelength regions are of particular interest for new developments and new approaches to realizing long-wavelength infrared (LWIR) photodetectors with high detectivity and high responsivity. These photodetectors are highly desirable for applications such as infrared earth science and astronomy, remote sensing, optical communication, and thermal and medical imaging. Here, we report the design, growth, and characterization of a high-gain band-structure-engineered LWIR heterojunction phototransistor based on type-II superlattices. The 1/e cut-off wavelength of the device is 8.0 µm. At 77 K, unity optical gain occurs at a 90 mV applied bias with a dark current density of 3.2 × 10−7 A/cm2. The optical gain of the device at 77 K saturates at a value of 276 at an applied bias of 220 mV. This saturation corresponds to a responsivity of 1284 A/W and a specific detectivity of 2.34 × 1013 cm Hz1/2/W at a peak detection wavelength of ~6.8 µm. The type-II superlattice-based high-gain LWIR device shows the possibility of designing the high-performance gain-based LWIR photodetectors by implementing the band structure engineering approach. reprint
 
10.  
Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Study of Phase Transition in MOCVD Grown Ga2O3 from κ to β Phase by Ex Situ and In Situ Annealing
Junhee Lee, Honghyuk Kim, Lakshay Gautam, Kun He, Xiaobing Hu, Vinayak P. Dravid and Manijeh Razeghi
Photonics 2021, 8, 17. https://doi.org/10.3390/ photonics8010017
We report the post-growth thermal annealing and the subsequent phase transition of Ga2O3 grown on c-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). We demonstrated the post-growth thermal annealing at temperatures higher than 900 °C under N2 ambience, by either in situ or ex situ thermal annealing, can induce phase transition from nominally metastable κ- to thermodynamically stable β-phase. This was analyzed by structural characterizations such as high-resolution scanning transmission electron microscopy and x-ray diffraction. The highly resistive as-grown Ga2O3 epitaxial layer becomes conductive after annealing at 1000 °C. Furthermore, we demonstrate that in situ annealing can lead to a crack-free β-Ga2O3. reprint
 
11.  
Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector
Manijeh Razeghi, Arash Dehzangi, Jiakai Li
Results in Optics Volume 2, January 2021, 100054 https://doi.org/10.1016/j.rio.2021.100054
Type-II InAs/GaSb superlattices (T2SLs) has drawn a lot of attention since it was introduced in 1970, especially for infrared detection as a system of multi-interacting quantum wells. In recent years, T2SL material system has experienced incredible improvements in material quality, device structure designs and device fabrication process, which elevated the performances of T2SL-based photo-detectors to a comparable level to the state-of-the-art material systems for infrared detection such as Mercury Cadmium Telluride (MCT). As a pioneer in the field, center for quantum devices (CQD) has been involved in growth, design, characterization, and introduction of T2SL material system for infrared photodetection. In this review paper, we will present the latest development of bias-selectable multi-band infrared photodetectors at the CQD, based on InAs/GaSb/AlSb and InAs/InAs1-xSbx type-II superlattice. reprint
 
12.  
Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Geiger-Mode Operation of AlGaN Avalanche Photodiodes at 255 nm
Lakshay Gautam, Alexandre Guillaume Jaud, Junhee Lee, Gail J. Brown, Manijeh Razeghi
Published in: IEEE Journal of Quantum Electronics ( Volume: 57, Issue: 2, April 2021)
We report the Geiger mode operation of back-illuminated AlGaN avalanche photodiodes. The devices were fabricated on transparent AlN templates specifically for back-illumination to leverage hole-initiated multiplication. The spectral response was analyzed with a peak detection wavelength of 255 nm with an external quantum efficiency of ~14% at zero bias. Low-photon detection capabilities were demonstrated in devices with areas 25 μm×25 μm. Single photon detection efficiencies of ~5% were achieved. reprint
 
13.  
Avalanche Photodetector Based on InAs/InSb Superlattice
Avalanche Photodetector Based on InAs/InSb Superlattice
Arash Dehzangi, Jiakai Li, Lakshay Gautam and Manijeh Razeghi
Quantum rep. 2020, 2(4), 591-599; https://doi.org/10.3390/quantum2040041 (registering DOI)-- December 4, 2020
This work demonstrates a mid-wavelength infrared InAs/InSb superlattice avalanche photodiode (APD). The superlattice APD structure was grown by molecular beam epitaxy on GaSb substrate. The device exhibits a 100 % cut-off wavelength of 4.6 µm at 150 K and 4.30 µm at 77 K. At 150 and 77 K, the device responsivity reaches peak values of 2.49 and 2.32 A/W at 3.75 µm under −1.0 V applied bias, respectively. The device reveals an electron dominated avalanching mechanism with a gain value of 6 at 150 K and 7.4 at 77 K which was observed under −6.5 V bias voltage. The gain value was measured at different temperatures and different diode sizes. The electron and hole impact ionization coefficients were calculated and compared to give a better prospect of the performance of the device. reprint
 
14.  
Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Resonant cavity enhanced heterojunction phototransistors based on type-II superlattices
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics & Technology Available online 27 October 2020, 103552 https://doi.org/10.1016/j.infrared.2020.103552-- October 27, 2020
Resonant cavity enhanced heterojunction phototransistor based on InAs/GaSb/AlSb type-II superlattice grown by molecular beam epitaxy has been demonstrated. The resonant wavelength was designed to be at near 1.9 μm wavelength range at room temperature. An eleven-pair lattice matched GaSb-AlAsSb quarter-wavelength Bragg reflector was used in the RCE-HPT to enhance the photoresponse. The device showed the wavelength selectivity and a cavity enhancement of the responsivity at 1.9 μm at room temperature. reprint
 
15.  
Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Demonstration of Planar Type-II Superlattice-Based Photodetectors Using Silicon Ion-Implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, Alexander Jaud and Manijeh Razeghi
Photonics 2020, 7(3), 68; https://doi.org/10.3390/photonics7030068-- September 3, 2020
In this letter, we report the demonstration of a pBn planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices, using silicon ion-implantation to isolate the devices. At 77 K the photodetectors exhibited peak responsivity of 0.76 A/W at 3.8 µm, corresponding to a quantum efficiency, without anti-reflection coating, of 21.5% under an applied bias of +40 mV with a 100% cut-off wavelength of 4.6 µm. With a dark current density of 5.21 × 10−6 A/cm2, under +40 mV applied bias and at 77 K, the photodetector exhibited a specific detectivity of 4.95 × 1011 cm·Hz1/2/W. reprint
 
16.  
High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
High Performance InAs/InAsSb Type-II Superlattice Mid-Wavelength Infrared Photodetectors with Double Barrier
Donghai Wu, Jiakai Li, Arash Dehzangi, Manijeh Razeghi
Infrared Physics &Technology 103439-- July 18, 2020
By introducing a double barrier design, a high performance InAs/InAsSb type-II superlattice mid-wavelength infrared photodetector has been demonstrated. The photodetector exhibits a cut-off wavelength of ~4.50 µm at 150 K. At 150 K and −120 mV applied bias, the photodetector exhibits a dark current density of 1.21 × 10−5 A/cm2, a quantum efficiency of 45% at peak responsivity (~3.95 µm), and a specific detectivity of 6.9 × 1011 cm·Hz1/2/W. The photodetector shows background-limited operating temperature up to 160 K. reprint
 
17.  
Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
Room temperature quantum cascade laser with ∼ 31% wall-plug efficiency
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
AIP Advances 10, 075012-- July 14, 2020
In this article, we report the demonstration of a quantum cascade laser emitting at λ ≈ 4.9 μm with a wall-plug efficiency of ∼31% and an output power of ∼23 W in pulsed operation at room temperature with 50 cascade stages (Ns). With proper fabrication and packaging, this buried ridge quantum cascade laser with a cavity length of 5 mm delivers more than ∼15 W output power, and its wall-plug efficiency exceeds ∼20% at 100 °C. The experimental results of the lasers are well in agreement with the numerical predictions. reprint
 
18.  
Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
Room temperature quantum cascade lasers with 22% wall plug efficiency in continuous-wave operation
F. Wang, S. Slivken, D. H. Wu, and M. Razeghi
Optics Express Vol. 28, Issue 12, pp. 17532-17538-- June 8, 2020
We report the demonstration of quantum cascade lasers (QCLs) with improved efficiency emitting at a wavelength of 4.9 µm in pulsed and continuous-wave(CW)operation. Based on an established design and guided by simulation, the number of QCL-emitting stages is increased in order to realize a 29.3% wall plug efficiency (WPE) in pulsed operation at room temperature. With proper fabrication and packaging, a 5-mm-long, 8-µm-wide QCL with a buried ridge waveguide is capable of 22% CW WPE and 5.6 W CW output power at room temperature. This corresponds to an extremely high optical density at the output facet of ∼35 MW/cm², without any damage. reprint
 
19.  
Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Planar nBn type-II superlattice mid-wavelength infrared photodetectors using zinc ion-implantation
Arash Dehzangi, Donghai Wu, Ryan McClintock, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 221103 https://doi.org/10.1063/5.0010273-- June 2, 2020
In this Letter, we report the demonstration of zinc ion-implantation to realize planar mid-wavelength infrared photodetectors based on type-II InAs/InAs1−xSbx superlattices. At 77 K, the photodetectors exhibit a peak responsivity of 0.68 A/W at 3.35 μm, corresponding to a quantum efficiency of 23.5% under Vb = −80 mV, without anti-reflection coating; these photodetectors have a 100% cutoff wavelength of 4.28 μm. With an R0 × A value of 1.53 × 104 Ω cm2 and a dark current density of 1.23 × 10−6 A/cm2 under an applied bias of −80 mV at 77 K, the photodetectors exhibit a specific detectivity of 9.12 × 1011 cm·Hz1/2/W. reprint
 
20.  
Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
Continuous wave quantum cascade lasers with 5.6 W output power at room temperature and 41% wall-plug efficiency in cryogenic operation
F. Wang, S. Slivken, D. H. Wu, Q. Y. Lu, and M. Razeghi
AIP Advances 10, 055120-- May 19, 2020
In this paper, we report a post-polishing technique to achieve nearly complete surface planarization for the buried ridge regrowth processing of quantum cascade lasers. The planarized device geometry improves the thermal conduction and reliability and, most importantly, enhances the power and efficiency in continuous wave operation. With this technique, we demonstrate a high continuous wave wall-plug efficiency of an InP-based quantum cascade laser reaching ∼41% with an output power of ∼12 W from a single facet operating at liquid nitrogen temperature. At room temperature, the continuous wave output power exceeds the previous record, reaching ∼5.6 W. reprint
 
21.  
High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ∼3.8-8.3 µm
High power continuous wave operation of single mode quantum cascade lasers up to 5 W spanning λ∼3.8-8.3 µm
Quanyong Lu, Steven Slivken, Donghai Wu, and Manijeh Razeghi
Optics Express Vol. 28, Issue 10, pp. 15181-15188-- May 4, 2020
In this work, we report high power continuous wave room-temperature operation single mode quantum cascade lasers in the mid-infrared spectral range from 3.8 to 8.3 µm. Single mode robustness and dynamic range are enhanced by optimizing the distributed feedback grating coupling design and the facet coatings. High power single mode operation is secured by circumventing the over-coupling issue and spatial hole burning effect. Maximum single-facet continuous-wave output power of 5.1 W and wall plug efficiency of 16.6% is achieved at room temperature. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field with negligible beam steering is observed. The significantly increased power for single mode emission will boost the QCL applications in long-range free-space communication and remote sensing of hazardous chemicals. reprint
 
22.  
Type-II superlattice-based heterojunction phototransistors for high speed applications
Type-II superlattice-based heterojunction phototransistors for high speed applications
Jiakai Li, Arash Dehzangi, Donghai Wu, Ryan McClintock, Manijeh Razeghi
Infrared Physics and Technology 108, 1033502-- May 2, 2020
In this study, high speed performance of heterojunction phototransistors (HPTs) based on InAs/GaSb/AlSb type-II superlattice with 30 nm base thickness and 50% cut-off wavelength of 2.0 μm at room temperature are demonstrated. We studied the relationship between -3 dB cut-off frequency of these HPT versus mesa size, applied bias, and collector layer thickness. For 8 μm diameter circular mesas HPT devices with a 0.5 μm collector layer, under 20 V applied bias voltage, we achieved a -3 dB cut-off frequency of 2.8 GHz. reprint
 
23.  
Sb-based third generation at Center for Quantum Devices
Sb-based third generation at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11407, Infrared Technology and Applications XLVI; 114070T-- April 23, 2020
Sb-based III-V semiconductors are a promising alternative to HgCdTe. They can be produced with a similar bandgap to HgCdTe, but take advantage of the strong bonding between group III and group V elements which leads to very stable materials, good radiation hardness, and high uniformity. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the Sb-based 3th generation imagers. reprint
 
24.  
High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs<sub>1-x</sub>Sb<sub>x</sub> superlattice photodetector by MOCVD
High performance Zn-diffused planar mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodetector by MOCVD
Donghai Wu, Arash Dehzangi, Jiakai Li, and Manijeh Razeghi
Appl. Phys. Lett. 116, 161108-- April 21, 2020
We report a Zn-diffused planar mid-wavelength infrared photodetector based on type-II InAs/InAs1-xSbx superlattices. Both the superlattice growth and Zn diffusion were performed in a metal-organic chemical vapor deposition system. At 77K, the photodetector exhibits a peak responsivity of 0.70A/W at 3.65λ, corresponding to a quantum efficiency of 24% at zero bias without anti-reflection coating, with a 50% cutoff wavelength of 4.28λ. With an R0A value of 3.2x105 Ω·cm2 and a dark current density of 9.6x10-8 A/cm² bias of -20mV at 77K, the photodetector exhibits a specific detectivity of 2.9x1012cm·Hz½/W. At 150K, the photodetector exhibits a dark current density of 9.1x10-6 A/cm² and a quantum efficiency of 25%, resulting in a detectivity of 3.4x1011cm·Hz/W. reprint
 
25.  
High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
High power, high wall-plug efficiency, high reliability, continuous-wave operation quantum cascade lasers at Center for Quantum Devices
Razeghi, Manijeh
SPIE Proceedings Volume 11296, Optical, Opto-Atomic, and Entanglement-Enhanced Precision Metrology II; 112961C-- February 25, 2020
Since the demonstration of the first quantum cascade laser (QCL) in 1997, QCLs have undergone considerable developments in output power, wall plug efficiency (WPE), beam quality, wavelength coverage and tunability. Among them, many world-class breakthroughs were achieved at the Center for Quantum Device at Northwestern University. In this paper, we will discuss the recent progress of our research and present the main contributions of the Center for Quantum Devices to the QCL family on high power, high wall-plug efficiency (WPE), continuous-wave (CW) and room temperature operation lasers. reprint
 

Page 1 of 31:  1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  >> Next  (759 Items)