Publications by    
Page 10 of 32:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (785 Items)

226.  
Free-space optical communication using mid-infrared or solar-blind ultraviolet sources and detectors
Free-space optical communication using mid-infrared or solar-blind ultraviolet sources and detectors
R. McClintock, A. Haddadi and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 826810-- January 22, 2012
Free-space optical communication is a promising solution to the “last mile” bottleneck of data networks. Conventional near infrared-based free-space optical communication systems suffer from atmospheric scattering losses and scintillation effects which limit the performance of the data links. Using mid-infrared, we reduce the scattering and thus can improve the quality of the data links and increase their range. Because of the low scattering, the data link cannot be intercepted without a complete or partial loss in power detected by the receiver. This type of communications provides ultra-high bandwidth and highly secure data transfer for both short and medium range data links. Quantum cascade lasers are one of the most promising sources for mid-wavelength infrared sources and Type-II superlattice photodetectors are strong candidates for detection in this regime. The same way that that low scattering makes mid-wavelength infrared ideal for secure free space communications,high scattering can be used for secure short-range free-space optical communications. In the solar-blind ultraviolet (< 280 nm) light is strongly scattered and absorbed. This scattering makes possible non-line-of-sight free-space optical communications. The scattering and absorption also prevent remote eavesdropping. III-Nitride based LEDs and photodetectors are ideal for non-line-of-sight free-space optical communication. reprint
 
227.  
Reliable GaN-based resonant tunneling diodes with reproducible room-temperature negative differential resistance
Reliable GaN-based resonant tunneling diodes with reproducible room-temperature negative differential resistance
C. Bayram, D.K. Sadana, Z. Vashaei and M. Razeghi
SPIE Proceedings, Vol. 8268, p. 826827-- January 22, 2012
negative differential resistance (NDR). Compared to other negative resistance devices such as (Esaki) tunnel and transferred-electron devices, RTDs operate much faster and at higher temperatures. III-nitride materials, composed of AlGaInN alloys, have wide bandgap, high carrier mobility and thermal stability; making them ideal for high power high frequency RTDs. Moreover, larger conduction band discontinuity promise higher NDR than other materials (such as GaAs) and room-temperature operation. However, earlier efforts on GaN-based RTD structures have failed to achieve a reliable and reproducible NDR. Recently, we have demonstrated for the first time that minimizing dislocation density and eliminating the piezoelectric fields enable reliable and reproducible NDR in GaN-based RTDs even at room temperature. Observation of NDR under both forward and reverse bias as well as at room and low temperatures attribute the NDR behaviour to quantum tunneling. This demonstration marks an important milestone in exploring III-nitride quantum devices, and will pave the way towards fundamental quantum transport studies as well as for high frequency optoelectronic devices such as terahertz emitters based on oscillators and cascading structures. reprint
 
228.  
Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
Suppression of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors
G. Chen; B.-M. Nguyen; A.M. Hoang; E.K. Huang; S.R. Darvish; M. Razeghi
Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX, 826811 (January 20, 2012)-- January 20, 2012
One of the biggest challenges of improving the electrical performance in Type II InAs/GaSb superlattice photodetector is suppressing the surface leakage. Surface leakage screens important bulk dark current mechanisms, and brings difficulty and uncertainty to the material optimization and bulk intrinsic parameters extraction such as carrier lifetime and mobility. Most of surface treatments were attempted beyond the mid-infrared (MWIR) regime because compared to the bulk performance, surface leakage in MWIR was generally considered to be a minor factor. In this work, we show that below 150K, surface leakage still strongly affects the electrical performance of the very high bulk performance p-π-M-n MWIR photon detectors. With gating technique, we can effectively eliminate the surface leakage in a controllable manner. At 110K, the dark current density of a 4.7 μm cut-off gated photon diode is more than 2 orders of magnitude lower than the current density in SiO2 passivated ungated diode. With a quantum efficiency of 48%, the specific detecivity of gated diodes attains 2.5 x 1014 cm·Hz1/2/W, which is 3.6 times higher than that of ungated diodes. reprint
 
229.  
High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
High operability 1024 x 1024 long wavelength infrared focal plane array base on Type-II InAs/GaSb superlattice
A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.M. Nguyen and M. Razeghi
AIP Conference Proceedings, Vol. 1416, p. 56-58_NGS15 Conf_Blacksburg, VA_Aug 1-5, 2011-- December 31, 2011
Fabrication and characterization of a high performance 1024×1024 long wavelength infrared type‐II superlattice focal plane array are described. The FPA performs imaging at a continous rate of 15.00 frames/sec. Each pixel has pitch of 18μm with a fill factor of 71.31%. It demonstrates excellent operability of 95.8% and 97.4% at 81 and 68K operation temperature. The external quantum efficiency is ∼81% without any antireflective coating. Using F∕2 optics and an integration time of 0.13ms, the FPA exhibits an NEDT as low as 27 and 19mK at operating temperatures of 81 and 68K respectively. reprint
 
230.  
High power, continuous wave, quantum cascade ring laser
High power, continuous wave, quantum cascade ring laser
Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, Q.Y. Lu, D. Caffey, M. Pushkarsky, T. Day and M. Razeghi
Applied Physics Letters, Vol. 99, No. 26, p. 261104-1-- December 26, 2011
We demonstrate a quantum cascade ring laser with high power room temperature continuous wave operation. A second order distributed feedback grating buried inside the waveguide provides both in-plane feedback and vertical power outcoupling. Total output power reaches 0.51 W at an emission wavelength around 4.85 μm. Single mode operation persists up to 0.4 W. The far field analysis indicates that the device operates in a high order mode. The magnetic and electric components of the ring-shaped lasing beam are in radial and azimuthal directions, respectively. reprint
 
231.  
Stable single mode terahertz semiconductor sources at room temperature
Stable single mode terahertz semiconductor sources at room temperature
M. Razeghi
2011 International Semiconductor Device Research Symposium, ISDRS [6135180] (2011).-- December 7, 2011
Terahertz (THz) range is an area of the electromagnetic spectra which has lots of applications but it suffers from the lack of simple working devices which can emit THz radiation, such as the high performance mid-infrared (mid-IR) quantum cascade lasers (QCLs) based on InP technology. The applications for the THz can be found in astronomy and space research, biology imaging, security, industrial inspection, etc. Unlike THz QCLs based on the fundamental oscillators, which are limited to cryogenic operations, semiconductor THz sources based on nonlinear effects of mid-IR QCLs do not suffer from operating temperature limitations, because mid-IR QCLs can operate well above room temperature. THz sources based on difference frequency generation (DFG) utilize nonlinear properties of asymmetric quantum structures, such as QCL structures. reprint
 
232.  
Recent advances of terahertz quantum cascade lasers
Recent advances of terahertz quantum cascade lasers
Manijeh Razeghi
Proc. SPIE 8119, Terahertz Emitters, Receivers, and Applications II, 81190D (September 07, 2011)-- November 7, 2011
In the past decade, tremendous development has been made in GaAs/AlGaAs based THz quantum cascade laser (QCLs), however, the maximum operating temperature is still limited below 200 K (without magnetic field). THz QCL based on difference frequency generation (DFG) represents a viable technology for room temperature operation. Recently, we have demonstrated room temperature THz emission (∼ 4 THz) up to 8.5 μW with a power conversion efficiency of 10 μW/W². A dual-period distributed feedback grating is used to filter the mid-infrared spectra in favor of an extremely narrow THz linewidth of 6.6 GHz. reprint
 
233.  
Use of PLD-grown moth-eye ZnO nanostructures as templates for MOVPE growth of InGaN-based photovoltaics
Use of PLD-grown moth-eye ZnO nanostructures as templates for MOVPE growth of InGaN-based photovoltaics
Dave Rogers, V. E. Sandana, F. Hosseini Teherani, S. Gautier, G. Orsal, T. Moudakir, M. Molinari, M. Troyon, M. Peres, M. J. Soares, A. J. Neves, T. Monteiro, D. McGrouther, J. N. Chapman, H. J. Drouhin, M. Razeghi, and A. Ougazzaden
Renewable Energy and the Environment, OSA Technical Digest paper PWB3, Optical Society of America, (2011)-- November 2, 2011
At this time, no abstract is available. Scopus has content delivery agreements in place with each publisher and currently contains 30 million records with an abstract. An abstract may not be present due to incomplete data, as supplied by the publisher, or is still in the process of being indexed. reprint
 
234.  
Elimination of surface leakage in gate controlled Type-II InAs/GaSb mid-infrared photodetectors
Elimination of surface leakage in gate controlled Type-II InAs/GaSb mid-infrared photodetectors
G. Chen, B.-M. Nguyen, A.M. Hoang, E.K. Huang, S.R. Darvish, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 18, p. 183503-1-- October 31, 2011
The electrical performance of mid-infrared type-II superlattice M-barrier photodetectors is shown to be limited by surface leakage. By applying gate bias on the mesa sidewall surface, leakage current is significantly reduced. Qualitatively IV modeling shows diffusion-dominated behavior of dark current at temperatures greater than 120 K. At 110 K, the dark current of gated device is reduced by more than 2 orders of magnitude, reaching the measurement system noise floor. With a quantum efficiency of 48% in front side illumination configuration, a 4.7μm cut-off gated device attains a specific detectivity of 2.5 × 1014 cm·Hz½·W-1 at 110 K, which is 3.6 times higher than in ungated devices. reprint
 
235.  
Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers
Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai and M. Razeghi
Applied Physics Letters, Vol. 99, Issue 13, p. 131106-1-- September 26, 2011
We demonstrate room temperature single-mode THz emission at 4 THz based on intracavity difference-frequency generation from mid-infrared dual-wavelength quantum cascade lasers. An integrated dual-period distributed feedback grating is defined on the cap layer to purify both mid-infrared pumping wavelengths and in turn the THz spectra. Single mode operation of the pumping wavelengths results in a single-mode THz operation with a narrow linewidth of 6.6 GHz. A maximum THz power of 8.5 μW with a power conversion efficiency of 10 μW/W² is obtained at room temperature. reprint
 
236.  
Deep ultraviolet (254 nm) focal plane array
Deep ultraviolet (254 nm) focal plane array
E. Cicek, Z. Vashaei, R. McClintock, and M. Razeghi
SPIE Proceedings, Conference on Infrared Sensors, Devices and Applications; and Single Photon Imaging II, Vol. 8155, p. 81551O-1-- August 21, 2011
We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A·cm-2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated. reprint
 
237.  
Effect of contact doping on superlattice-based minority carrier unipolar detectors
Effect of contact doping on superlattice-based minority carrier unipolar detectors
B.M. Nguyen, G. Chen, A.M. Hoang, S. Abdollahi Pour, S. Bogdanov, and M. Razeghi
Applied Physics Letters, Vol. 99, No. 3, p. 033501-1-- July 18, 2011
We report the influence of the contact doping profile on the performance of superlattice-based minority carrier unipolar devices for mid-wave infrared detection. Unlike in a photodiode, the space charge in the p-contact of a pMp unipolar device is formed with accumulated mobile carriers, resulting in higher dark current in the device with highly doped p-contact. By reducing the doping concentration in the contact layer, the dark current is decreased by one order of magnitude. At 150 K, 4.9 μm cut-off devices exhibit a dark current of 2 × 10−5A/cm² and a quantum efficiency of 44%. The resulting specific detectivity is 6.2 × 1011 cm·Hz1/2/W at 150 K and exceeds 1.9 × 1014 cm·Hz1/2/W at 77 K. reprint
 
238.  
Recent advances in IR semiconductor laser diodes and future trends
Recent advances in IR semiconductor laser diodes and future trends
M. Razeghi; Y. Bai; N. Bandyopadhyay; B. Gokden; Q.Y. Lu; S. Slivken
Photonics Society Summer Topical Meeting Series, IEEE [6000041], pp. 55-56 (2011)-- July 18, 2011
The wall plug efficiency of the mid-infrared quantum cascade laser in room temperature continuous wave (cw) operation is brought to 21%, with a maximum output power of 5.1 W. Using a surface grating distributed feedback (DFB) approach, we demonstrated 2.4 W single mode output in room temperature cw operation. With a photonic crystal distributed feedback (PCDFB) design, we achieved single mode spectrum and close to diffraction limited far field with a room temperature high peak power of 34 W. reprint
 
239.  
Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance
E.K. Huang, A. Haddadi, G. Chen, B.M. Nguyen, M.A. Hoang, R. McClintock, M. Stegall, and M. Razeghi
OSA Optics Letters, Vol. 36, No. 13, p. 2560-2562-- July 1, 2011
We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ∼5×1011 Jones at 7.9 μm in the blue channel and ∼1×1011 Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry–Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ∼20 mK for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. reprint
 
240.  
Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures
Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, and B.M. Nguyen
Opto-Electronics Review (OER), Vol. 19, No. 3, June 2011, p. 46-54-- June 1, 2011
Recent efforts to improve the performance of type-II InAs/GaSb superlattice photodiodes and focal plane arrays (FPA) have been reviewed. The theoretical bandstructure models have been discussed first. A review of recent developments in growth and characterization techniques is given. The efforts to improve the performance of MWIR photodiodes and focal plane arrays (FPAs) have been reviewed and the latest results have been reported. It is shown that these improvements has resulted in background limited performance (BLIP) of single element photodiodes up to 180 K. FPA shows a constant noise equivalent temperature difference (NEDT) of 11 mK up to 120 K and it shows human body imaging up to 170 K. reprint
 
241.  
Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers
Widely Tunable, Single-Mode, High-Power Quantum Cascade Lasers
M. Razeghi, B. Gokden, S. Tsao, A. Haddadi, N. Bandyopadhyay, and S. Slivken
SPIE Proceedings, Intergreated Photonics: Materials, Devices and Applications, SPIE Microtechnologies Symposium, Prague, Czech Republic, April 18-20, 2011, Vol. 8069, p. 806905-1-- May 31, 2011
We demonstrate widely tunable high power distributed feedback quantum cascade laser array chips that span 190 nm and 200 nm from 4.4 um to 4.59 um and 4.5 um to 4.7 um respectively. The lasers emit single mode with a very narrow linewidth and side mode suppression ratio of 25 dB. Under pulsed operation power outputs up to 1.85 W was obtained from arrays with 3 mm cavity length and up to 0.95 W from arrays with 2 mm cavity length at room temperature. Continuous wave operation was also observed from both chips with 2 mm and 3 mm long cavity arrays up to 150 mW. The cleaved size of the array chip with 3 mm long cavities was around 4 mm x 5 mm and does not require sensitive external optical components to achieve wide tunability. With their small size and high portability, monolithically integrated DFB QCL Arrays are prominent candidates of widely tunable, compact, efficient and high power sources of mid-infrared radiation for gas sensing. reprint
 
242.  
Toward realizing high power semiconductor terahertz laser sources at room temperature
Toward realizing high power semiconductor terahertz laser sources at room temperature
Manijeh Razeghi
Proc. SPIE 8023, Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, 802302 (May 25, 2011)-- May 25, 2011
The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (∼ 36 meV) in this material system. With a much larger LO-phonon energy of ∼ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths. reprint
 
243.  
Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer
Growth and Characterization of Long-Wavelength Infrared Type-II Superlattice Photodiodes on a 3-in GaSb Wafer
B.M. Nguyen, G. Chen, M.A. Hoang, and M. Razeghi
IEEE Journal of Quantum Electronics (JQE), Vol. 47, No. 5, May 2011, p. 686-690-- May 11, 2011
We report the molecular beam epitaxial growth and characterization of high performance Type-II superlattice photodiodes on 3” GaSb substrates for long wavelength infrared detection. A 7.3 micron thick device structure shows excellent structural homogeneity via atomic force microscopy and x-ray diffraction characterization. Optical and electrical measurements of photodiodes reveal not only the uniformity of the Type-II superlattice material but also of the fabrication process. Across the wafer, at 77 K, photodiodes with a 50% cut-off wavelength of 11 micron exhibit more than 45% quantum efficiency, and a dark current density of 1.0 x 10-4 A/cm² at 50 mV, resulting in a specific detectivity of 6x1011 cm·Hz1/2/W. reprint
 
244.  
2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers
2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers
Q.Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181106-1-- May 4, 2011
We demonstrate high power continuous-wave room-temperature operation surface-grating distributed feedback quantum cascade lasers at 4.8 μm. High power single mode operation benefits from a combination of high-reflection and antireflection coatings. Maximum single-facet continuous-wave output power of 2.4 W and peak wall plug efficiency of 10% from one facet is obtained at 298 K. Single mode operation with a side mode suppression ratio of 30 dB and single-lobed far field without beam steering is observed. reprint
 
245.  
Room temperature quantum cascade lasers with 27% wall plug efficiency
Room temperature quantum cascade lasers with 27% wall plug efficiency
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 181102-1-- May 3, 2011
Using the recently proposed shallow-well design, we demonstrate InP based quantum cascade lasers (QCLs) emitting around 4.9 μm with 27% and 21% wall plug efficiencies in room temperature (298 K) pulsed and continuous wave (CW) operations, respectively. The laser core consists of 40 QCL-stages. The highest cw efficiency is obtained from a buried-ridge device with a ridge width of 8 μm and a cavity length of 5 mm. The front and back facets are antireflection and high-reflection coated, respectively. The maximum single facet cw power at room temperature amounts to 5.1 W. reprint
 
246.  
Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes
Surface leakage current reduction in long wavelength infrared type-II InAs/GaSb superlattice photodiodes
S. Bogdanov, B.M. Nguyen, A.M. Hoang, and M. Razeghi
Applied Physics Letters, Vol. 98, No. 18, p. 183501-1-- May 2, 2011
Dielectric passivation of long wavelength infrared Type-II InAs/GaSb superlattice photodetectors with different active region doping profiles has been studied. SiO2 passivation was shown to be efficient as long as it was not put in direct contact with the highly doped superlattice. A hybrid graded doping profile combined with the shallow etch technique reduced the surface leakage current in SiO2 passivated devices by up to two orders of magnitude compared to the usual design. As a result, at 77 K the SiO(2) passivated devices with 10.5 μm cutoff wavelength exhibit an R0A of 120 Ω·cm², RmaxA of 6000 Ω·cm², and a dark current level of 3.5×10−5 A·cm−2 at −50 mV bias. reprint
 
247.  
III-Nitride Optoelectronic Devices:  From Ultraviolet Toward Terahertz
III-Nitride Optoelectronic Devices: From Ultraviolet Toward Terahertz
M. Razeghi
IEEE Photonics Journal-Breakthroughs in Photonics 2010, Vol. 3, No. 2, p. 263-267-- April 26, 2011
We review III-Nitride optoelectronic device technologies with an emphasis on recent breakthroughs. We start with a brief summary of historical accomplishments and then report the state-of-the-art in three key spectral regimes: (1) Ultraviolet (AlGaN-based avalanche photodiodes, single photon detectors, focal plane arrays, and light emitting diodes), (2) Visible (InGaN-based solid state lighting, lasers, and solar cells), and (3) Near-, mid-infrared, and terahertz (AlGaN/GaN-based gap-engineered intersubband devices). We also describe future trends in III-Nitride optoelectronic devices. reprint
 
248.  
High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
High operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice
M. Razeghi, S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi and B.M. Nguyen
SPIE Proceedings, Infrared Technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80122Q-1-- April 26, 2011
Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x10(12) cm.Hz(1/2)/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK. reprint
 
249.  
Recent advances in high performance antimonide-based superlattice FPAs
Recent advances in high performance antimonide-based superlattice FPAs
E.K. Huang, B.M. Nguyen, S.R. Darvish, S. Abdollahi Pour, G. Chen, A. Haddadi, and M.A. Hoang
SPIE Proceedings, Infrared technology and Applications XXXVII, Orlando, FL, Vol. 8012, p. 80120T-1-- April 25, 2011
Infrared detection technologies entering the third generation demand performances for higher detectivity, higher operating temperature, higher resolution and multi-color detection, all accomplished with better yield and lower manufacturing/operating costs. Type-II antimonide based superlattices (T2SL) are making firm steps toward the new era of focal plane array imaging as witnessed in the unique advantages and significant progress achieved in recent years. In this talk, we will present the four research themes towards third generation imagers based on T2SL at the Center for Quantum Devices. High performance LWIR megapixel focal plane arrays (FPAs) are demonstrated at 80K with an NEDT of 23.6 mK using f/2 optics, an integration time of 0.13 ms and a 300 K background. MWIR and LWIR FPAs on non-native GaAs substrates are demonstrated as a proof of concept for the cost reduction and mass production of this technology. In the MWIR regime, progress has been made to elevate the operating temperature of the device, in order to avoid the burden of liquid nitrogen cooling. We have demonstrated a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm·Hz1/2/W at 150 K for 4.2 μm cut-off single element devices. Progress on LWIR/LWIR dual color FPAs as well as novel approaches for FPA fabrication will also be discussed. reprint
 
250.  
High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices
High operating temperature midwave infrared photodiodes and focal plane arrays based on type-II InAs/GaSb superlattices
S. Abdollahi Pour, E.K. Huang, G. Chen, A. Haddadi, B.M. Nguyen and M. Razeghi
Applied Physics Letters, Vol. 98, No. 14, p. 143501-1-- April 4, 2011
The dominant dark current mechanisms are identified and suppressed to improve the performance of midwave infrared InAs/GaSb Type-II superlattice photodiodes at high temperatures. The optimized heterojunction photodiode exhibits a quantum efficiency of 50% for 2 μm thick active region without any bias dependence. At 150 K, R0A of 5100 Ω·cm² and specific detectivity of 1.05×1012 cm·Hz0.5·W-1 are demonstrated for a 50% cutoff wavelength of 4.2 μm. Assuming 300 K background temperature and 2π field of view, the performance of the detector is background limited up to 180 K, which is improved by 25 °C compared to the homojunction photodiode. Infrared imaging using f/2.3 optics and an integration time of 10.02 ms demonstrates a noise equivalent temperature difference of 11 mK at operating temperatures below 120 K. reprint
 

Page 10 of 32:  Prev << 1 2 3 4 5 6 7 8 9 10  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (785 Items)