About the CQD | News | Conferences | Publications | Books | Research | People | History | Patents | Contact | Channel | |
Page 16 of 31: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 >> Next (773 Items)
376.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12).png) | High-power, continuous-operation intersubband laser for wavelengths greater than 10 micron S. Slivken, A. Evans, W. Zhang and M. Razeghi Applied Physics Letters, Vol. 90, No. 15, p. 151115-1-- April 9, 2007 In this letter, high-power continuous-wave emission (>100 mW) and high temperature operation (358 K) at a wavelength of 10.6 µm is demonstrated using an individual diode laser. This wavelength is advantageous for many medium-power applications previously reserved for the carbon dioxide laser. Improved performance was accomplished using industry-standard InP-based materials and by careful attention to design, growth, and fabrication limitations specific to long-wave infrared semiconductor lasers. The main problem areas are explored with regard to laser performance, and general steps are outlined to minimize their impact.
reprint |
377.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13).png) | 320x256 infrared focal plane array based on type-II InAs/GaSb superlattice with a 12 μm cutoff wavelength P.Y. Delaunay, B.M. Nguyen, D. Hoffman, and M. Razeghi SPIE Porceedings, Vol. 6542, Orlando, FL 2007, p. 654204-- April 9, 2007 In the past few years, significant progress has been made in the structure design, growth and
processing of Type-II InAs/GaSb superlattice photodetectors. Type-II superlattice demonstrated its ability to perform imaging in the middle and long infra-red range, becoming a potential competitor for technologies such as QWIP and HgCdTe. Using an empirical tight-binding model, we developed a superlattice design that matches the lattice parameter of GaSb substrates and presents a cutoff wavelength of 12 μm. Electrical and optical measurements performed on single element detectors at 77 K showed an R0A averaging 13 Ω·cm² and a quantum efficiency as high as 54%. We demonstrated high quality material growth with x-ray FWHM below 30 arcsec and an AFM rms roughness of 1.5 Å over an area of 20x20 μm². A 320x256 array of 25x25μm² pixels, hybridized to an Indigo Read Out Integrated Circuit, performed thermal imaging up to 185 K with an operability close to 97%. The noise equivalent temperature difference at 81 K presented a peak at 270 mK, corresponding to a mean value of 340 mK. reprint |
378.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14).png) | Hole-initiated multiplication in back-illuminated GaN avalanche photodiodes R. McClintock, J.L. Pau, K. Minder, C. Bayram, P. Kung and M. Razeghi Applied Physics Letters, Vol. 90 No. 14, p. 141112-1-- April 2, 2007 Avalanche p-i-n photodiodes were fabricated on AlN templates for back illumination. Structures with different intrinsic layer thicknesses were tested. A critical electric field of 2.73 MV/cm was estimated from the variation of the breakdown voltage with thickness. From the device response under back and front illumination and the consequent selective injection of holes and electrons in the junction, ionization coefficients were obtained for GaN. The hole ionization coefficient was found to be higher than the electron ionization coefficient as predicted by theory. Excess multiplication noise factors were also calculated for back and front illumination, and indicated a higher noise contribution for electron injection. reprint |
379.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15).png) | Materials characterization of n-ZnO/p-GaN:Mg/c-Al(2)O(3) UV LEDs grown by pulsed laser deposition and metal-organic chemical vapor deposition D. Rogers, F.H. Teherani, P. Kung, K. Minder, and M. Razeghi Superlattices and Microstructures-- April 1, 2007 n-ZnO/p-GaN:Mg hybrid heterojunctions grown on c-Al2O3 substrates showed 375 nm room temperature electroluminescence. It was suggested that the high materials and interface quality obtained using pulsed laser deposition for the n-ZnO growth and metal–organic chemical vapor deposition for the p-GaN:Mg were key factors enabling the injection of holes and the radiative near band edge recombination in the ZnO. In this paper we present the materials characterization of this structure using x-ray diffraction, scanning electron microscopy and atomic force microscopy. reprint |
380.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16).png) | High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature H. Lim, S. Tsao, W. Zhang, and M. Razeghi Applied Physics Letters, Vol. 90, No. 13, p. 131112-1-- March 26, 2007 The authors report a room temperature operating InAs quantum-dot infrared photodetector grown on InP substrate. The self-assembled InAs quantum dots and the device structure were grown by low-pressure metal-organic chemical vapor deposition. The detectivity was 2.8×1011 cm·Hz1/2/W at 120 K and a bias of −5 V with a peak detection wavelength around 4.1 μm and a quantum efficiency of 35%. Due to the low dark current and high responsivity, a clear photoresponse has been observed at room temperature, which gives a detectivity of 6.7×107 cm·Hz1/2/W. reprint |
381.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18).png) | Quantum cascade laser: A tool for trace chemical detection Allan J. Evans; Manijeh Razeghi -- March 26, 2007 Laser-based trace chemical sensors are highly desired to enhance pollution filtering, health and safety monitoring, and filter efficiency monitoring for industrial processes. Limitations of current monitoring and sensing techniques are discussed and the benefits of mid-infrared spectroscopy using novel Quantum Cascade semiconductor Lasers (QCLs) are presented. These new techniques promise inexpensive, miniaturized sensors, capable of remote detection of trace chemicals in liquids, solids, and gasses with levels less than 1 part-per-billion. Applications of these techniques are discussed and the most recent developments of application-ready high power (> 100 mW), continuous-wave, mid-infrared QCLs operating above room temperature with lifetimes exceeding 12,000 hours are presented. |
382.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19).png) | Etching of ZnO Towards the Development of ZnO Homostructure LEDs K. Minder, F.H. Teherani, D. Rogers, C. Bayram, R. McClintock, P. Kung, and M. Razeghi SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Zinc Oxide Materials and Devices II, Vol. 6474, p. 64740Q-1-6-- January 29, 2007 Although ZnO has recently gained much interest as an alternative to the III-Nitride material system, the development of ZnO based optoelectonic devices is still in its infancy. Significant material breakthroughs in p-type doping of ZnO thin films and improvements in crystal growth techniques have recently been achieved, making the development of optoelectonic devices possible. First, a survey of current ZnO processing methods is presented, followed by the results of our processing research. reprint |
383.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20).png) | Type-II InAs/GaSb Superlattice Focal Plane Arrays for High-Performance Third Generation Infrared Imaging and Free-Space Communication M. Razeghi, A. Hood and A. Evans SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Optoelectronic Integrated Circuits IX, Vol. 6476, p. 64760Q-1-9-- January 29, 2007 Free-space optical communications has recently been touted as a solution to the "last mile" bottleneck of high speed data networks providing highly secure, short to long range, and high bandwidth connections. However, commercial near infrared systems experience atmospheric scattering losses and scintillation effects which can adversely affect a link's uptime. By moving the operating wavelength into the mid or long wavelength infrared enhanced link uptimes and increased range can be achieved due to less susceptibility atmospheric affects. The combination of room temperature, continuous wave' high power quantum cascade lasers and high operating temperature Type-II superlattice photodetectors offers the benefits of mid and long wavelength infrared systems as well as practical operating conditions. reprint |
384.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21).png) | III-Nitride Avalanche Photodiodes P. Kung, R. McClintock, J. Pau Vizcaino, K. Minder, C. Bayram and M. Razeghi SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791J-1-12-- January 29, 2007 Wide bandgap III-Nitride semiconductors are a promising material system for the development of ultraviolet avalanche photodiodes (APDs) that could be a viable alternative to photomultiplier tubes. In this paper, we report the epitaxial growth and physical properties of device quality GaN layers on high quality AlN templates for the first backilluminated GaN p-i-n APD structures on transparent sapphire substrates. Under low bias and linear mode avalanche operation where they exhibited gains near 1500 after undergoing avalanche breakdown. The breakdown electric field in GaN was determined to be 2.73 MV/cm. The hole impact ionization coefficients were shown to be greater than those of electrons. reprint |
385.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22).png) | Techniques for High-Quality SiO2 Films J. Nguyen and M. Razeghi SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64791K-1-8-- January 29, 2007 We report on the comparison of optical, structural, and electrical properties of SiO2 using plasma-enhanced chemical vapor deposition and ion-beam sputtering deposition. High-quality, low-temperature deposition of SiO2 by ion-beam sputtering deposition is shown to have lower absorption, smoother and more densely packed films, a lower amount of fixed oxide charges, and a lower trapped-interface density than SiO2 by plasma-enhanced chemical vapor deposition. This high-quality SiO2 is then demonstrated as an excellent electrical and mechanical surface passivation layer on Type-II InAs/GaSb photodetectors reprint |
386.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23).png) | Type-II ‘M’ Structure Photodiodes: An Alternative Material Design for Mid-Wave to Long Wavelength Infrared Regimes B-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown SPIE Conference, January 25-29, 2007, San Jose, CA Proceedings – Quantum Sensing and Nanophotonic Devices IV, Vol. 6479, p. 64790S-1-10-- January 29, 2007 In this work, an AlSb-containing Type-II InAs/GaSb superlattice, the so-called M-structure, is presented as a candidate for mid and long wavelength infrared detection devices. The effect of inserting an AlSb barrier in the GaSb layer is discussed and predicts many promising properties relevant to practical use. A good agreement between the theoretical calculation based on Empirical Tight Binding Method framework and experimental results is observed, showing the feasibility of the structure and its properties. A band gap engineering method without material stress constraint is proposed. reprint |
387.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25).png) | High-power continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 7.8 µm S.R. Darvish, W. Zhang, A. Evans, J.S. Yu, S. Slivken, and M. Razeghi Applied Physics Letters, 89 (25)-- December 18, 2006 The authors present high-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers. Continuous-wave output powers of 56 mW at 25 °C and 15 mW at 40 °C are obtained. Single-mode emission near 7.8 μm with a side-mode suppression ratio of >=30 dB and a tuning range of 2.83 cm−1 was obtained between 15 and 40 °C. The device exhibits no beam steering with a full width at half maximum of 27.4° at 25 °C in cw mode. reprint |
388.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26).png) | Influence of Residual Impurity Background on the Non-radiative Recombination Processes in High Purity InAs/GaSb superlattice Photodiodes E.C.F. da Silva, D. Hoffman, A. Hood, B. Nguyen, P.Y. Delaunay and M. Razeghi Applied Physics Letters, 89 (24)-- December 11, 2006 The influence of the impurity background on the recombination processes in type-II InAs/GaSb superlattice photodiodes with a cutoff wavelength of approximately 4.8 μm was investigated by electroluminescence measurements. Using an iterative fitting procedure based on the dependence of the quantum efficiency of the electroluminescence on the injection current, the Auger and Shockley-Read-Hall lifetimes were determined reprint |
389.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27).png) | Gain and recombination dynamics of quantum-dot infrared photodetecto H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi Virtual Journal of Nanoscale Science & Technology-- December 4, 2006reprint |
390.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28).png) | Gain and recombination dynamics of quantum-dot infrared photodetectors H. Lim, B. Movaghar, S. Tsao, M. Taguchi, W. Zhang, A.A. Quivy, and M. Razeghi Physical Review B, 74 (20)-- November 15, 2006 In this paper we present a theory of diffusion and recombination in QDIPs which is an attempt to explain the recently reported values of gain in these devices. We allow the kinetics to encompass both the diffusion and capture rate limited regimes of carrier relaxation using rigorous random walk and diffusion methods. The photoconductive gains are calculated and compared with the experimental values obtained from InGaAs/InGaP/GaAs and InAs/InP QDIPs using the generation-recombination noise analysis. reprint |
391.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29).png) | Recent advances in high power mid- and far-wavelength infrared lasers for free space communication S. Slivken and M. Razeghi SPIE Optics East Conference, October 1-4, 2006, Boston, MA Proceedings – Active and Passive Optical Components for Communications VI, Vol. 6389, p. 63890S-1-- October 4, 2006 Link reliability is a significant issue for free space optical links. Inclement weather, such as fog, can seriously reduce the transmission of light through the atmosphere. However, this effect, for some types of fog, is wavelength-dependent. In order to improve link availability in both metro and hostile environments, mid- and far-wavelength infrared diode lasers can be of use. This paper will discuss some of the recent advances in high-power, uncooled quantum cascade lasers and their potential for use in long range and/or highly reliable free space communication links. reprint |
392.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30).png) | First Demonstration of ~ 10 microns FPAs in InAs/GaSb SLS M. Razeghi, P.Y. Delaunay, B.M. Nguyen, A. Hood, D. Hoffman, R. McClintock, Y. Wei, E. Michel, V. Nathan and M. Tidrow IEEE LEOS Newsletter 20 (5)-- October 1, 2006 The concept of Type-II InAs/GaSb superlattice was first brought by Nobel Laureate L. Esaki, et al. in the 1970s. There had been few studies on this material system until two decades later when reasonable quality material growth was made possible using molecular beam epitaxy. With the addition of cracker cells for the group V sources and optimizations of material growth conditions, the superlattice quality become significantly improved and the detectors made of these superlattice materials can meet the demand in some practical field applications. Especially in the LWIR regime, it provides a very promising alternative to HgCdTe for better material stability and uniformity, etc. We have developed the empirical tight binding model (ETBM) for precise determination of the superlattice bandgap. reprint |
393.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31).png) | Optical Coatings by ion-beam sputtering deposition for long-wave infrared quantum cascade lasers J. Nguyen, J.S. Yu, A. Evans, S. Slivken and M. Razeghi Applied Physics Letters, 89 (11)-- September 11, 2006 The authors report on the development of high-reflection and multilayer antireflection coatings using ion-beam sputtering deposition for long-wave infrared (λ~9.4 μm) quantum cascade lasers. A metallic high-reflection coating structure using Y2O3 and Au is demonstrated to achieve a high reflectance of 96.70%, and the use of a multilayer anti-reflection coating structure using PbTe and ZnO is demonstrated to achieve a very low reflectance of 1.64%. reprint |
394.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32).png) | High differential resistance type-II InAs/GaSb superlattice photodiodes for the long-wavelength infrared A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and M. Razeghi Applied Physics Letters, 89 (9)-- August 28, 2006 Type-II InAs/GaSb superlattice photodiodes with a 50% cutoff wavelength ranging from 11 to 13 μm are presented. Optimization of diffusion limited photodiodes provided superlattice structures for improved injection efficiency in direct injection hybrid focal plane array applications. reprint |
395.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33).png) | High performance mid-wavelength quantum dot infrared photodetectors for focal plane arrays M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang and A.A. Quivy SPIE Conference, San Diego, CA, Vol. 6297, pp. 62970C-- August 13, 2006 Quantum dot infrared photodetectors (QDIPs) have recently emerged as promising candidates for detection in the middle wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges. Here, we report our recent results for mid-wavelength QDIPs grown by low-pressure metalorganic chemical vapor deposition. Three monolayer of In0.68Ga0.32As self-assembled via the Stranski-Krastanov growth mode and formed lens-shaped InGaAs quantum dots with a density around 3×1010 cm-2. The peak responsivity at 77 K was measured to be 3.4 A/W at a bias of -1.9 V with 4.7 µm peak detection wavelength. Focal plane arrays (FPAs) based on these devices have been developed. The preliminary result of FPA imaging is presented. reprint |
396.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34).png) | Reliability of strain-balanced Ga0.331In0.669As/Al0.659In0.341As/InP quantum-cascade lasers under continuous-wave room-temperature operation A. Evans and M. Razeghi Applied Physics Letters, 88 (26)-- June 26, 2006 Constant current aging is reported for two randomly selected high-reflectivity-coated QCLs with an output power over 100 mW. QCLs are tested under continuous-wave operation at a heat sink temperature of 298 K(25 °C) corresponding to an internal temperature of 378 K (105 °C). Over 4000 h of continuous testing is reported without any decrease in output power. reprint |
397.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35).png) | Temperature dependent characteristics of λ ~ 3.8 µm room-temperature continuous-wave quantum-cascade lasers J.S. Yu, A. Evans, S. Slivken, S.R. Darvish and M. Razeghi Applied Physics Letters, 88 (25)-- June 19, 2006 The highest-performance device displays pulsed laser action at wavelengths between 3.4 and 3.6 μm, for temperatures up to 300 K, with a low temperature (80 K) threshold current density of approximately 2.6 kA/cm2, and a characteristic temperature of T0~130 K. The shortest wavelength QCL (λ ~ 3.05 μm) has a higher threshold current density (~12 kA/cm2 at T=20 K) and operates in pulsed mode at temperatures up to 110 K. reprint |
398. | Quantum Dots in GaInP/GaInAs/GaAs for Infrared Sensing M. Razeghi, H. Lim, S. Tsao, M. Taguchi, W. Zhang, and A.A. Quivy Advances in Science and Technology 51-- June 4, 2006 Quantum dots grown by epitaxial self-assembly via Stranski- Krastanov growth mode have many favorable properties for infrared sensing. Because of their very small size and three-dimensional confinement, the electronic energy levels are quantized and discrete. These quantum effects lead to a unique property, “phonon bottleneck”, which might enable the high operating temperature of infrared sensing which usually requires cryogenic cooling. Here we report a focal plane array (FPA) based on an epitaxial self-assembled quantum dot infrared detector (QDIP). The device structure containing self-assembled In0.68Ga0.32As quantum dots with a density around 3×1010 cm-2 was grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). Using different structures, we successfully developed QDIPs with a peak photoresponse around 5 μm and 9 μm. High peak detectivities were achieved at 77 K from both QDIPs. By stacking both device structures, we demonstrated a two-color QDIP whose peak detection wavelength could be tuned from 5 μm to 9 μm by changing the bias. 256×256 detector arrays based on 5 μm and 9 μm-QDIPs were fabricated with standard photolithography, dry etching and hybridization to a read-out integrated circuit (ROIC). We demonstrated thermal imaging from our FPAs based on QDIPs. |
399.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36).png) | Room-temperature, high-power and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm S.R. Darvish, S. Slivken, A. Evans, J.S. Yu, and M. Razeghi Applied Physics Letters, 88 (20)-- May 15, 2006 High-power continuous-wave (cw) operation of distributed-feedback quantum-cascade lasers is reported. Continuous-wave output powers of 100 mW at 25 °C and 20 mW at 50 °C are obtained. The device exhibits a cw threshold current density of 1.34 kA/cm2, a maximum cw wall-plug efficiency of 1% at 25 °C, and a characteristic temperature of ~190 K in pulsed mode. Single-mode emission near 9.6 μm with a side-mode suppression ratio of ≥ 30 dB and a tuning range of 2.89 cm–1 from 15 to 50 °C is obtained. reprint |
400.
(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30)(31)(32)(33)(34)(35)(36)(37).png) | Type-II superlattice photodetectors for MWIR to VLWIR focal plane arrays M. Razeghi, Y. Wei, A. Hood, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E. Michel and R. McClintock SPIE Infrared Technology and Applications Conference, April 17-21, 2006, Orlando, FL Proceedings – Infrared Technology and Applications XXXII, Vol. 6206, p. 62060N-1-- April 21, 2006 Results obtained on GaSb/InAs Type-II superlattices have shown performance comparable to HgCdTe detectors, with the promise of higher performance due to reduced Auger recombination and dark current through improvements in device design and material quality. In this paper, we discuss advancements in Type-II IR sensors that cover the 3 to > 30 µm wavelength range. Specific topics covered will be device design and modeling using the Empirical Tight Binding Method (ETBM), material growth and characterization, device fabrication and testing, as well as focal plane array processing and imaging. Imaging has been demonstrated at room temperature for the first time with a 5 µm cutoff wavelength 256×256 focal plane array. reprint |
Page 16 of 31: Prev << 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 >> Next (773 Items)
|