Publications by    
Page 3 of 4:  Prev << 1 2 3  4  >> Next  (83 Items)

51.  Solar blind GaN p-i-n photodiodes
D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, J. Diaz and M. Razeghi
Applied Physics Letters 72 (25)-- June 22, 1998
We present the growth and characterization of GaN p-i-n photodiodes with a very high degree of visible blindness. The thin films were grown by low-pressure metalorganic chemical vapor deposition. The room-temperature spectral response shows a high responsivity of 0.15 A/W up until 365 nm, above which the response decreases by six orders of magnitude. Current/voltage measurements supply us with a zero bias resistance of 1011  Ω. Lastly, the temporal response shows a rise and fall time of 2.5 μs measured at zero bias. This response time is limited by the measurement circuit. reprint
 
52.  Continuous-wave room-temperature operation of InGaN/GaN multiquantum well lasers grown by low-pressure metalorganic chemical vapor deposition
M. Razeghi, A. Saxler, P. Kung, D. Walker, X. Zhang, A. Rybaltowski, Y. Xiao, H.J. Yi and J. Diaz
SPIE Conference, San Jose, CA, Vol. 3284, pp. 113-- January 28, 1998
Continuous-wave (CW) room temperature operation of InGaN/GaN multi-quantum well (MQW) lasers is reported. Far-field beam divergence as narrow as 13 degrees and 20 degrees for parallel and perpendicular directions to epilayer planes were measured, respectively. The MQW lasers showed strong beam polarization anisotropy as consistent with QW laser gain theory. Dependencies of threshold current on cavity-length and temperature are also consistent with conventional laser theory. No significant degradation in laser characteristics was observed during lifetime testing for over 140 hours of CW room temperature operation. reprint
 
53.  GaN p-i-n photodiodes with high visible-to-ultraviolet rejection ratio
P. Kung, X. Zhang, D. Walker, A. Saxler, and M. Razeghi
SPIE Conference, San Jose, CA, -- January 28, 1998
UV photodetectors are critical components in many applications, including UV astronomy, flame sensors, early missile threat warning and space-to-space communications. Because of the presence of strong IR radiation in these situations, the photodetectors have to be solar blind, i.e. able to detect UV radiation while not being sensitive to IR. AlxGa1-xN is a promising material system for such devices. AlxGa1-xN materials are wide bandgap semiconductors, with a direct bandgap whose corresponding wavelength can be continuously tuned from 200 to 365 nm. AlxGa1-xN materials are thus insensitive to visible and IR radiation whose wavelengths are higher than 365 nm. We have already reported the fabrication and characterization of AlxGa1-xN-based photoconductors with a cut-off wavelength tunable from 200 to 365 nm by adjusting the ternary alloy composition. Here, we present the growth and characterization of GaN p-i- n photodiodes which exhibit a visible-to-UV rejection ratio of 6 orders or magnitude. The thin films were grown by low pressure metalorganic chemical vapor deposition. Square mesa structures were fabricated using dry etching, followed by contact metallization. The spectral response, rejection ratio and transient response of these photodiodes is reported. reprint
 
54.  New Developments in III-Nitride Material and Device Applications
M. Razeghi, A. Saxler, P. Kung, D. Walker, X. Zhang, K.S. Kim, H.R. Vydyanath, J. Solomon, M. Ahoujja, and W.C. Mitchel
-- January 1, 1998
 
55.  GaInN/GaN Multi-Quantum Well Laser Diodes Grown by Low-Pressure Metalorganic Chemical Vapor Deposition
P. Kung, A. Saxler, D. Walker, A. Rybaltowski, X. Zhang, J. Diaz, and M. Razeghi
MRS Internet Journal of Nitride Semiconductor Research 3 (1)-- January 1, 1998
We report the growth, fabrication and characterization of GaInN/GaN multi-quantum well lasers grown on (00·1) sapphire substrates by low pressure metalorganic chemical vapor deposition. The threshold current density of a 1800 µm long cavity length laser was 1.4 kA/cm² with a threshold voltage of 25 V. These lasers exhibited series resistances of 13 and 14 Ω at 300 and 79 K, respectively. reprint
 
56.  Comparison of Trimethylgallium and Triethylgallium for the Growth of GaN
A. Saxler, D. Walker, P. Kung, X. Zhang, M. Razeghi, J. Solomon, W. Mitchel, and H.R. Vydyanath
Applied Physics Letters 71 (22)-- December 1, 1997
GaN films grown by low-pressure metalorganic chemical vapor deposition using trimethylgallium and triethylgallium as gallium precursors are compared. The films were characterized by x-ray diffraction, Hall effect, photoluminescence, secondary ion mass spectroscopy, and etch pit density measurements. GaN layers grown using triethylgallium exhibited superior electrical and optical properties and a lower carbon impurity concentration. reprint
 
57.  GaN Grown Using Trimethylgallium and Triethylgallium
A. Saxler, P. Kung, X. Zhang, D. Walker, J. Solomon, W.C. Mitchel and M. Razeghi
-- July 1, 1997
 
58.  GaN Doped with Sulfur
A. Saxler, P. Kung, X. Zhang, D. Walker, J. Solomon, M. Ahoujja, W.C. Mitchel, H.R. Vydyanath, and M. Razeghi
-- July 1, 1997
 
59.  Electroluminescence of III-Nitride Double Heterostructure Light Emitting Diodes with Silicon and Magnesium Doped InGaN
A. Saxler, K.S. Kim, D. Walker, P. Kung, X. Zhang, G.J. Brown, W.C. Mitchel and M. Razeghi
-- July 1, 1997
 
60.  Structural and Microstructural Characterization of GaN Thin Films and GaN-based Heterostructures Grown on Sapphire Substrates
M. Razeghi, P. Kung, X. Zhang, D. Walker, A. Saxler, K.Y. Lim and K.S. Kim
-- June 30, 1997
 
61.  AlxGa1-xN (0 ≤ x ≤ 1) Ultraviolet Photodetectors Grown on Sapphire by Metal-organic Chemical-vapor Deposition
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
Applied Physics Letters 70 (8)-- February 24, 1997
AlxGa1–xN (0 ≤ x ≤ 1) ultraviolet photoconductors with cutoff wavelengths from 365 to 200 nm have been fabricated and characterized. The maximum detectivity reached 5.5 × 108 cm·Hz1/2/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1–xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 ms. The frequency-dependent noise spectrum shows that it is dominated by Johnson noise at high frequencies for low-Al-composition samples. reprint
 
62.  Intrinsic AlGaN photodetectors for the entire compositional range
D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi
SPIE Conference, San Jose, CA, -- February 12, 1997
AlxGa1-xN ultraviolet photoconductors with cut- off wavelengths from 365 nm to 200 nm have been fabricated and characterized. Various characteristics of the devices, such as photoresponse, voltage-dependent responsivity, frequency-dependent responsivity and noise spectral density, were measured and cross-referenced with optical, electrical and structural characteristics of the material to provide information about the mechanisms taking place during detection. The maximum detectivity reached 5.5 X 108 cm·Hz½/W at a modulating frequency of 14 Hz. The effective majority carrier lifetime in AlxGa1-xN materials, derived from frequency-dependent photoconductivity measurements, has been estimated to be from 6 to 35 msec. The frequency-dependent noise-spectrum shows that it is dominated by Johnson-noise at high frequencies for low Al-composition samples. reprint
 
63.  MOCVD Growth of High Quality GaN-AlGaN Based Structures on Al2O3 Substrates with Dislocation Density less than 107cm-2
P. Kung, X. Zhang, A. Saxler, D. Walker, M. Razeghi, W. Qian, and V.P. Dravid
-- January 1, 1997
 
64.  High Resolution X-ray Diffraction of GaN Grown on Sapphire Substrates
A. Saxler, M.A. Capano, W.C. Mitchel, P. Kung, X. Zhang, D. Walker and M. Razeghi
-- December 2, 1996
 
65.  AlGaN Based Materials and Heterostructures
P. Kung, A. Saxler, D. Walker, X. Zhang, R. Lavado, K.S. Kim, and M. Razeghi
-- December 2, 1996
 
66.  Observation of Room Temperature Surface-Emitting Stimulated Emission from GaN:Ge by Optical pumping
X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi
Journal of Applied Physics 80 (11)-- December 1, 1996
Optically pumped surface-emitting stimulated emission at room temperature was observed from GaN:Ge grown by metalorganic chemical vapor deposition. The sample was optically pumped perpendicularly on the top surface while the stimulated emission was collected from the back colinearly with the pump beam. The cavity was formed by the GaN/air and GaN/sapphire interfaces without any other structure. The stimulated emission was gain guided by the pump beam. The threshold optical pump density for stimulated emission was approximately 2.8 MW/cm² and the linewidth was 2.5 nm. The emission from GaN:Ge showed a redshift as the pump density increased. The comparison between theoretical calculations and experimental results suggested that many-body interactions can account well for the redshift. reprint
 
67.  Recent advances in III-Nitride materials, characterization and device applications
M. Razeghi, X. Zhang, P. Kung, A. Saxler, D. Walker, K.Y. Lim, and K.S. Kim
SPIE Conference: Solid State Crystals in Optoelectronics and Semiconductor Technology; Proceedings 3179-- October 7, 1996
High-quality AlN, GaN, AlGaN have been grown on sapphire substrate by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The x-ray rocking curve of AlN and GaN were 100 arcsecs and 30 arcsecs respectively with Pendelloesung oscillations, which are the best reported to date. GaN with high crystallinity simultaneously exhibited high optical and electrical quality. Photoluminescence linewidth of GaN at 77K was as low as 17 meV, which is the best reported to date. Si-doped GaN had a mobility higher than 300 cm²/V·s. GaN has been also successfully grown on LiGaO2 substrate with LP-MOCVD for the first time. AlGaN for the entire composition range has been grown. These layers exhibited the lowest x-ray FWHM reported to date. The excellent optical quality of these layers have been characterized by room temperature UV transmission and photoluminescence. N-type doping of AlGaN with Si has ben achieved up to 60 percent Al with mobility as high as 78 cm²/V·s. AlxGa1-xN/AlyGa1-yN superlattice with atomically sharp interface have been demonstrated. Optically-pumped stimulated emission in GaN:Ge and GaN:Si has been observed with threshold optical power density as low as 0.4 MW/cm². AlGaN photoconductors with cut-off wavelengths from 200 nm to 365 nm have been achieved for the first time. GaN p-n junction photovoltaic detector with very selective photoresponse have been demonstrated and theoretically modeled. Ti/AlN/Si metal-insulator- semiconductor capacitor with high capacitance-voltage performances at both low and high frequencies and low interface trap level density have been demonstrated for the first time in this material system. reprint
 
68.  Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β-LiGaO2substrates
P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi
Applied Physics Letters 69 (14)-- September 30, 1996
We report the metalorganic chemical vapor deposition growth and characterization of monocrystalline GaN thin films on β-LiGaO2 substrates. The influence of the growth temperature on the crystal quality was studied. The structural, electrical, and optical properties of the films were assessed through scanning electron microscopy, x-ray diffraction, Hall measurements, optical transmission, photoluminescence. reprint
 
69.  Observation of inversion layers at AlN-Si interfaces fabricated by metal organic chemical vapour deposition
X. Zhang, D. Walker, A. Saxler, P. Kung, J. Xu, and M. Razeghi
-- August 15, 1996
 
70.  Demonstration of an Electronic Grade Ti/AlN/Si Metal-Insulator-Semiconductor Capacitor
X. Zhang, D. Walker, A. Saxler, P. Kung, J. Xu, and M. Razeghi
-- August 1, 1996
 
71.  AlGaN ultraviolet photoconductors grown on sapphire
D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi
Applied Physics Letters 68 (15)-- April 8, 1996
AlxGa1−xN (0≤x≤0.50) ultraviolet photoconductors with a minimum cutoff wavelength shorter than 260 nm have been fabricated and characterized. The AlGaN active layers were grown on (00⋅1) sapphire substrates by metalorganic chemical vapor deposition (MOCVD). The spectral responsivity of the GaN detector at 360 nm is about 1 A/W biased at 8 V at room temperature. The carrier lifetime derived from the voltage‐dependent responsivity is 0.13–0.36 ms. reprint
 
72.  GaN, GaAlN, and AlN for use in UV Detectors for Astrophysics: An Update
P. Kung, A. Saxler, X. Zhang, D. Walker, M. Razeghi, and M. Ulmer
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996
In SPIE Proceeding 2397 we demonstrated that there is a large payoff still to be gained by further improvements in the performance of solar blind UV detectors for astronomical purposes. We suggested that a particularly promising future technology is one based on the ability of investigators to produce high-quality films made of wide bandgap III-IV semiconductors. Here we report on significant progress we have made over the past year to fabricate and test single-pixel devices. The next step will be to measure and improve detective efficiency, measure the solar blindness over a larger dynamic range, and begin developing multiple-pixel designs. reprint
 
73.  UV photodetectors based on AlxGa1-xN grown by MOCVD
A. Saxler, D. Walker, X. Zhang, P. Kung, J. Xu, and M. Razeghi
SPIE Photonics West '96 Photodetectors: Materials and Devices; Proceedings 2685-- January 27, 1996
Metalorganic chemical vapor deposition was used to deposit AlxGa1-xN active layers with varying aluminum compositions on basal plane sapphire substrate. AlxGa1-xN (x < 0.5) ultraviolet photodetectors have been fabricated and characterized with cut-off wavelengths as short as 260 nm. Carrier lifetimes on the order of 10 milliseconds were estimated from frequency dependent measurements of the responsivity. reprint
 
74.  GaN Based Semiconductors for Future Optoelectronics
D. Walker, P. Kung, A. Saxler, X. Zhang, and M. Razeghi
-- January 1, 1996
 
75.  Kinetics of photoconductivity in n-type GaN photodetector
P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi
Applied Physics Letters 67 (25)-- December 18, 1995
High-quality ultraviolet photoconductive detectors have been fabricated using GaN layers grown by low-pressure metalorganic chemical vapor deposition on (11⋅0) sapphire substrates. The spectral responsivity remained nearly constant for wavelengths from 200 to 365 nm and dropped sharply by almost three orders of magnitude for wavelengths longer than 365 nm. The kinetics of the photoconductivity have been studied by the measurements of the frequency‐dependent photoresponse and photoconductivity decay. Strongly sublinear response and excitation‐dependent response time have been observed even at relatively low excitation levels. This can be attributed to redistribution of the charge carriers with increased excitation level. reprint
 

Page 3 of 4:  Prev << 1 2 3  4  >> Next  (83 Items)