Publications by    
Page 6 of 32:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (786 Items)

126.  
Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer
Wafer-scale epitaxial lift-off of optoelectronic grade GaN from a GaN substrate using a sacrificial ZnO interlayer
Akhil Rajan, David J Rogers, Cuong Ton-That, Liangchen Zhu, Matthew R Phillips, Suresh Sundaram, Simon Gautier, Tarik Moudakir, Youssef El-Gmili, Abdallah Ougazzaden, Vinod E Sandana, Ferechteh H Teherani, Philippe Bove, Kevin A Prior, Zakaria Djebbour, Ryan McClintock and Manijeh Razeghi
Journal of Physics D: Applied Physics, Volume 49, Number 31 -- July 15, 2016
Full 2 inch GaN epilayers were lifted off GaN and c-sapphire substrates by preferential chemical dissolution of sacrificial ZnO underlayers. Modification of the standard epitaxial lift-off (ELO) process by supporting the wax host with a glass substrate proved key in enabling full wafer scale-up. Scanning electron microscopy and x-ray diffraction confirmed that intact epitaxial GaN had been transferred to the glass host. Depth-resolved cathodoluminescence (CL) analysis of the bottom surface of the lifted-off GaN layer revealed strong near-band-edge (3.33 eV) emission indicating a superior optical quality for the GaN which was lifted off the GaN substrate. This modified ELO approach demonstrates that previous theories proposing that wax host curling was necessary to keep the ELO etch channel open do not apply to the GaN/ZnO system. The unprecedented full wafer transfer of epitaxial GaN to an alternative support by ELO offers the perspective of accelerating industrial adoption of the expensive GaN substrate through cost-reducing recycling. reprint
 
127.  
Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices
Mid-wavelength infrared heterojunction phototransistors based on type-II InAs/AlSb/GaSb superlattices
A. Haddadi, S. Adhikary, A. Dehzangi, and M. Razeghi
Applied Physics Letters 109, 021107-- July 12, 2016
A mid-wavelength infrared heterojunction phototransistor based on type-II InAs/AlSb/GaSb superlattices on GaSb substrate has been demonstrated. Near a wavelength of 4 μm saturated optical gains of 668 and 639 at 77 and 150 K, respectively, are demonstrated over a wide dynamic range. At 150 K, the unity optical gain collector dark current density and DC current gain are 1 × 10−3 A/cm² and 3710, respectively. This demonstrates the potential for use in high-speed applications. In addition, the phototransistor exhibits a specific detectivity value that is four times higher compared with a state-of-the-art type-II superlattice-based photodiode with a similar cut-off wavelength at 150 K. reprint
 
128.  
Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation
Recent Advances in Room Temperature, High-Power Terahertz Quantum Cascade Laser Sources Based on Difference-Frequency Generation
Quanyong Lu and Manijeh Razeghi
Photonics, 3, 42-- July 7, 2016
We present the current status of high-performance, compact, THz sources based on intracavity nonlinear frequency generation in mid-infrared quantum cascade lasers. Significant performance improvements of our THz sources in the power and wall plug efficiency are achieved by systematic optimizing the device’s active region, waveguide, and chip bonding strategy. High THz power up to 1.9 mW and 0.014 mW for pulsed mode and continuous wave operations at room temperature are demonstrated, respectively. Even higher power and efficiency are envisioned based on enhancements in outcoupling efficiency and mid-IR performance. Our compact THz device with high power and wide tuning range is highly suitable for imaging, sensing, spectroscopy, medical diagnosis, and many other applications. reprint
 
129.  
Engineering Multi-Section Quantum Cascade Lasers for Broadband Tuning
Engineering Multi-Section Quantum Cascade Lasers for Broadband Tuning
Steven Slivken and Manijeh Razeghi
Photonics 3, 41-- June 27, 2016
In an effort to overcome current limitations to electrical tuning of quantum cascade lasers, a strategy is proposed which combines heterogeneous quantum cascade laser gain engineering with sampled grating architectures. This approach seeks to not only widen the accessible spectral range for an individual emitter, but also compensate for functional non-uniformity of reflectivity and gain lineshapes. A trial laser with a dual wavelength core is presented which exhibits electroluminescence over a 750 cm−1 range and discrete single mode laser emission over a 700 cm−1 range. Electrical tuning over 180 cm−1 is demonstrated with a simple sampled grating design. A path forward to even wider tuning is also described using more sophisticated gain and grating design principles. reprint
 
130.  
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design
Wenjia Zhou, Neelanjan Bandyopadhyay, Donghai Wu, Ryan McClintock & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 25213 -- June 8, 2016
Quantum cascade lasers (QCLs) have become important laser sources for accessing the mid-infrared (mid-IR) spectral range, achieving watt-level continuous wave operation in a compact package at room temperature. However, up to now, wavelength tuning, which is desirable for most applications, has relied on external cavity feedback or exhibited a limited monolithic tuning range. Here we demonstrate a widely tunable QCL source over the 6.2 to 9.1 μm wavelength range with a single emitting aperture by integrating an eight-laser sampled grating distributed feedback laser array with an on-chip beam combiner. The laser gain medium is based on a five-core heterogeneous QCL wafer. A compact tunable laser system was built to drive the individual lasers within the array and produce any desired wavelength within the available spectral range. A rapid, broadband spectral measurement (520 cm−1) of methane using the tunable laser source shows excellent agreement to a measurement made using a standard low-speed infrared spectrometer. This monolithic, widely tunable laser technology is compact, with no moving parts, and will open new opportunities for MIR spectroscopy and chemical sensing. reprint
 
131.  
High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs<sub>1-x</sub>Sb<sub>x</sub>/AlAs<sub>1-x</sub>Sb<sub>x</sub> superlattices
High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
M. Razeghi, A. Haddadi, X. V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A. M. Hoang, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 98190A -- May 20, 2016
We present a high-performance short-wavelength infrared n-i-p photodiode, whose structure is based on type-II superlattices with InAs/InAs1-xSbx/AlAs1-xSbx on GaSb substrate. At room temperature (300K) with front-side illumination, the device shows the peak responsivity of 0.47 A/W at 1.6mm, corresponding to 37% quantum efficiency at zero bias. At 300K, the device has a 50% cut-off wavelength of ~1.8mm. For −50mV applied bias at 300 K the photodetector has dark current density of 9.6x10-5 A/cm² and RxA of 285 Ω•cm², and it revealed a detectivity of 6.45x1010 cm•Hz½/W. Dark current density reached to 1.3x10-8 A/cm² at 200 K, with 36% quantum efficiency which leads to the detectivity value of 5.66x1012 cm•Hz½/W. reprint
 
132.  
InAs/InAs<sub>1-x</sub>Sb<sub>x</sub> type-II superlattices for high performance long wavelength infrared detection
InAs/InAs1-xSbx type-II superlattices for high performance long wavelength infrared detection
M. Razeghi, A. Haddadi, A. M. Hoang, R. Chevallier, S. Adhikary, A. Dehzangi
Proc. SPIE 9819, Infrared Technology and Applications XLII, 981909-- May 20, 2016
We report InAs/InAs1-xSbx type-II superlattice base photodetector as high performance long-wavelength infrared nBn device grown on GaSb substrate. The device has 6 μm-thick absorption region, and shows optical performance with a peak responsivity of 4.47 A/W at 7.9 μm, which is corresponding to the quantum efficiency of 54% at a bias voltage of negative 90 mV, where no anti-reflection coating was used for front-side illumination. At 77K, the photodetector’s 50% cut-off wavelength was ~10 μm. The device shows the detectivity of 2.8x1011 cm•Hz½/W at 77 K, where RxA and dark current density were 119 Ω•cm² and 4.4x10-4 A/cm² , respectively, under -90 mV applied bias voltage reprint
 
133.  
High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices
Anh Minh Hoang, Arash Dehzangi, Sourav Adhikary, & Manijeh Razeghi
Nature Scientific Reports 6, Article number: 24144-- April 7, 2016
We propose a new approach in device architecture to realize bias-selectable three-color shortwave-midwave-longwave infrared photodetectors based on InAs/GaSb/AlSb type-II superlattices. The effect of conduction band off-set and different doping levels between two absorption layers are employed to control the turn-on voltage for individual channels. The optimization of these parameters leads to a successful separation of operation regimes; we demonstrate experimentally three-color photodiodes without using additional terminal contacts. As the applied bias voltage varies, the photodiodes exhibit sequentially the behavior of three different colors, corresponding to the bandgap of three absorbers. Well defined cut-offs and high quantum efficiency in each channel are achieved. Such all-in-one devices also provide the versatility of working as single or dual-band photodetectors at high operating temperature. With this design, by retaining the simplicity in device fabrication, this demonstration opens the prospect for three-color infrared imaging. reprint
 
134.  
Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers
Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers
Quanyong Lu, Donghai Wu, Saumya Sengupta, Steven Slivken, Manijeh Razeghi
Nature Scientific Reports 6, Article number: 23595-- March 24, 2016
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. reprint
 
135.  
High power, electrically tunable quantum cascade lasers
High power, electrically tunable quantum cascade lasers
Steven Slivken; Manijeh Razeghi
Proc. SPIE 9755, Quantum Sensing and Nano Electronics and Photonics-- February 13, 2016
Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser. reprint
 
136.  
High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier
High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier
S. Slivken, S. Sengupta, and M. Razeghi
Applied Physics Letters 107, 251101-- December 21, 2015
Wide electrical tuning and high continuous output power is demonstrated from a single mode quantum cascade laser emitting at a wavelength near 4.8 μm. This is achieved in a space efficient manner by integrating an asymmetric sampled grating distributed feedback tunable laser with an optical amplifier. An initial demonstration of high peak power operation in pulsed mode is demonstrated first, with >5 W output over a 270 nm (113 cm−1) spectral range. Refinement of the geometry leads to continuous operation with a single mode spectral coverage of 300 nm (120 cm−1) and a maximum continuous power of 1.25 W. The output beam is shown to be nearly diffraction-limited, even at high amplifier current. reprint
 
137.  
Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO
Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO
K. Pantzas, D.J. Rogers, P. Bove, V.E. Sandana, F.H. Teherani, Y. El Gmili, M. Molinari, G. Patriarche, L. Largeau, O. Mauguin, S. Suresh, P.L. Voss, M. Razeghi, A. Ougazzaden
Journal of Crystal Growth, Volume 435, Pages 105-109-- November 7, 2015
p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscopy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process. reprint
 
138.  
High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
High-performance short-wavelength infrared photodetectors based on type-II InAs/InAs1-xSbx/AlAs1-xSbx superlattices
A. Haddadi, X.V. Suo, S. Adhikary, P. Dianat, R. Chevallier, A.M. Hoang, and M. Razeghi
Applied Physics Letters 107 , 141104-- October 5, 2015
A high-performance short-wavelength infrared n-i-p photodiode based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices on GaSb substrate has been demonstrated. The device is designed to have a 50% cut-off wavelength of ~1.8μm at 300K. The photodetector exhibited a room-temperature (300 K) peak responsivity of 0.47 A/W at 1.6μm, corresponding to a quantum efficiency of 37% at zero bias under front-side illumination, without any anti-reflection coating. With an R×A of 285 Ω·cm² and a dark current density of 9.6×10-5 A/cm² under −50mV applied bias at 300 K, the photodiode exhibited a specific detectivity of 6.45×1010 cm·Hz½/W. At 200 K, the photodiode exhibited a dark current density of 1.3×10-8 A/cm² and a quantum efficiency of 36%, resulting in a detectivity of 5.66×1012 cm·Hz½/W. reprint
 
139.  
Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors
Growth of AlGaN on silicon substrates: a novel way to make back-illuminated ultraviolet photodetectors
Ryan McClintock ; Manijeh Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550U-- August 28, 2015
AlGaN, with its tunable wide-bandgap is a good choice for the realization of ultraviolet photodetectors. AlGaN films tend to be grown on foreign substrates such as sapphire, which is the most common choice for back-illuminated devices. However, even ultraviolet opaque substrates like silicon holds promise because, silicon can be removed by chemical treatment to allow back-illumination,1 and it is a very low-cost substrate which is available in large diameters up to 300 mm. However, Implementation of silicon as the solar-blind PD substrates requires overcoming the lattice-mismatch (17%) with the AlxGa1-xN that leads to high density of dislocation and crack-initiating stress. In this talk, we report the growth of thick crack-free AlGaN films on (111) silicon substrates through the use of a substrate patterning and mask-less selective area regrowth. This technique is critical as it decouples the epilayers and the substrate and allows for crack-free growth; however, the masking also helps to reduce the dislocation density by inclining the growth direction and encouraging dislocations to annihilate. A back-illuminated p-i-n PD structure is subsequently grown on this high quality template layer. After processing and hybridizing the device we use a chemical process to selectively remove the silicon substrate. This removal has minimal effect on the device, but it removes the UV-opaque silicon and allows back-illumination of the photodetector. We report our latest results of back-illuminated solar-blind photodetectors growth on silicon. reprint
 
140.  
Ultraviolet avalanche photodiodes
Ultraviolet avalanche photodiodes
Ryan McClintock ; Manijeh Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 95550B -- August 28, 2015
The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields – typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE. reprint
 
141.  
Solar-blind photodetectors and focal plane arrays based on AlGaN
Solar-blind photodetectors and focal plane arrays based on AlGaN
R. McClintock, M. Razeghi
Proc. SPIE 9555, Optical Sensing, Imaging, and Photon Counting: Nanostructured Devices and Applications, 955502-- August 25, 2015
III-Nitride material system (AlGaInN) possesses unique optical, electrical and structural properties such as a wide tunable direct bandgap, inherent fast carrier dynamics; good carrier transport properties, high breakdown fields; and high robustness and chemical stability. Recent technological advances in the wide bandgap AlGaN portion of this material system have led to a renewed interest in ultraviolet (UV) photodetectors. These detectors find use in numerous applications in the defense, commercial and scientific arenas such as covert space-to-space communications, early missile threat detection, chemical and biological threat detection and spectroscopy, flame detection and monitoring, UV environmental monitoring, and UV astronomy.1,2,3 Back illuminated detectors operating in the solar blind region are of special interest. Back illumination allows the detector to be hybridized to a silicon read-out integrated circuit, epi-side down, and still collect light through the back of the transparent sapphire substrate. This allows the realization of solar blind focal plane arrays (FPAs) for imaging applications. Solar-blind FPAs are especially important because of the near total absence of any background radiation in this region. In this talk, we will present our recent back-illuminated solar-blind photodetector, mini-array, and FPA results. By systematically optimizing the design of the structure we have realized external quantum efficiencies (EQE) of in excess of 89% for pixel-sized detectors. Based on the absence of any anti-reflection coating, this corresponds to nearly 100% internal quantum efficiency. At the same time, the dark current remains below ~2 × 10-9 A/cm² even at 10 volts of reverse bias. The detector has a very sharp falloff starting at 275 with the UV-solar rejection of better than three orders of magnitude, and a visible rejection ratio is more than 6 orders of magnitude. This high performance photodetector design was then used as the basis of the realization of solar-blind FPA. We demonstrated a 320×256 FPA with a peak detection wavelength of 278nm. The operability of the FPA was better than 92%, and excellent corrected imaging was obtained. reprint
 
142.  
Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain
Ultra-broadband quantum cascade laser, tunable over 760 cm−1, with balanced gain
N. Bandyopadhyay, M. Chen, S. Sengupta, S. Slivken, and M. Razeghi
Opt. Express 23, 21159-21164 -- August 10, 2015
A heterogeneous quantum cascade laser, consisting of multiple stacks of discrete wavelength quantum cascade stages, emitting in 5.9-10.9 µm, wavelength range is reported. The broadband characteristics are demonstrated with a distributed-feedback laser array, emitting at fixed frequencies at room temperature, covering an emission range of ~760 cm−1, which is ~59% relative to the center frequency. By appropriate choice of a strained AlInAs/GaInAs material system, quantum cascade stage design and spatial arrangement of stages, the distributed-feedback array has been engineered to exhibit a flat threshold current density across the demonstrated range. reprint
 
143.  
InAs/InAs<sub>1-X</sub>Sb<sub>x</sub> Type-II Superlattices for High-Performance Long-Wavelength Infrared Medical Thermography
InAs/InAs1-XSbx Type-II Superlattices for High-Performance Long-Wavelength Infrared Medical Thermography
Manijeh Razeghi, Abbas Haddadi, Guanxi Chen, Romain Chevallier and Ahn Minh Hoang
ECS Trans. 2015 66(7): 109-116-- June 1, 2015
We present the demonstration of a high-performance long-wavelength infrared nBn photodetectors based on InAs/InAs1-xSbx type-II superlattices on GaSb substrate. The photodetector’s 50% cut-off wavelength was ~10 μm at 77K. The photodetector with a 6 μm-thick absorption region exhibited a peak responsivity of 4.47 A/W at 7.9 μm, corresponding to a quantum efficiency of 54% at -90 mV applied bias voltage under front-side illumination and without any anti-reflection coating. With an R×A of 119 Ω·cm² and a dark current density of 4.4×10-4 A/cm² under -90 mV applied bias voltage at 77 K, the photodetector exhibited a specific detectivity of 2.8×1011 Jones. This photodetector opens a new horizon for making infrared imagers with higher sensitivity for medical thermography.
 
144.  
Core-shell GaN-ZnO Moth-eye Nanostructure Arrays Grown on a-SiO<sub>2</sub>/Si (111) as a basis for Improved InGaN-based Photovoltaics and LEDs
Core-shell GaN-ZnO Moth-eye Nanostructure Arrays Grown on a-SiO2/Si (111) as a basis for Improved InGaN-based Photovoltaics and LEDs
D.J. Rogers, V.E. Sandana, S. Gautier, T. Moudakir, M. Abid, A. Ougazzaden, F. Hosseini Teherani, P. Bove, M. Molinari, M. Troyon, M. Peres, Manuel J. Soares, A.J. Neves, T. Monteiro, D. McGrouther, J.N. Chapman, H.-J. Drouhin, R. McClintock, M. Razeghi
Photonics and Nanostructures - Fundamentals and Applications, Volume 15, Pages 53-58-- March 30, 2015
Self-forming, vertically-aligned, ZnO moth-eye-like nanoarrays were grown by catalyst-free pulsed laser deposition on a-SiO2/Si (111) substrates. X-Ray Diffraction (XRD) and Cathodoluminescence (CL) studies indicated that nanostructures were highly c-axis oriented wurtzite ZnO with strong near band edge emission. The nanostructures were used as templates for the growth of non-polar GaN by metal organic vapor phase epitaxy. XRD, scanning electron microscopy, energy dispersive X-ray microanalysis and CL revealed ZnO encapsulated with GaN, without evidence of ZnO back-etching. XRD showed compressive epitaxial strain in the GaN, which is conducive to stabilization of the higher indium contents required for more efficient green light emitting diode (LED) and photovoltaic (PV) operation. Angular-dependent specular reflection measurements showed a relative reflectance of less than 1% over the wavelength range of 400–720 nm at all angles up to 60°. The superior black-body performance of this moth-eye-like structure would boost LED light extraction and PV anti-reflection performance compared with existing planar or nanowire LED and PV morphologies. The enhancement in core conductivity, provided by the ZnO, would also improve current distribution and increase the effective junction area compared with nanowire devices based solely on GaN. reprint
 
145.  
Quantum cascade lasers: from tool to product
Quantum cascade lasers: from tool to product
M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken
Optics Express Vol. 23, Issue 7, pp. 8462-8475-- March 25, 2015
The quantum cascade laser (QCL) is an important laser source in the mid-infrared and terahertz frequency range. The past twenty years have witnessed its tremendous development in power, wall plug efficiency, frequency coverage and tunability, beam quality, as well as various applications based on QCL technology. Nowadays, QCLs can deliver high continuous wave power output up to 5.1 W at room temperature, and cover a wide frequency range from 3 to 300 μm by simply varying the material components. Broadband heterogeneous QCLs with a broad spectral range from 3 to 12 μm, wavelength agile QCLs based on monolithic sampled grating design, and on-chip beam QCL combiner are being developed for the next generation tunable mid-infrared source for spectroscopy and sensing. Terahertz sources based on nonlinear generation in QCLs further extend the accessible wavelength into the terahertz range. Room temperature continuous wave operation, high terahertz power up to 1.9 mW, and wide frequency tunability form 1 to 5 THz makes this type of device suitable for many applications in terahertz spectroscopy, imaging, and communication. reprint
 
146.  
Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers
Scale-up of the Chemical Lift-off of (In)GaN-based p-i-n Junctions from Sapphire Substrates Using Sacrificial ZnO Template Layers
D. J. Rogers, S. Sundaram, Y. El Gmili, F. Hosseini Teherani, P. Bove, V. Sandana, P. L. Voss, A. Ougazzaden, A. Rajan, K.A. Prior, R. McClintock, & M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 936424 -- March 24, 2015
(In)GaN p-i-n structures were grown by MOVPE on both GaN- and ZnO-coated c-sapphire substrates. XRD studies of the as-grown layers revealed that a strongly c-axis oriented wurtzite crystal structure was obtained on both templates and that there was a slight compressive strain in the ZnO underlayer which increased after GaN overgrowth. The InGaN peak position gave an estimate of 13.6at% for the indium content in the active layer. SEM and AFM revealed that the top surface morphologies were similar for both substrates, with an RMS roughness (5 μm x 5 μm) of about 10 nm. Granularity appeared slightly coarser (40nm for the device grown on ZnO vs 30nm for the device grown on the GaN template) however. CL revealed a weaker GaN near band edge UV emission peak and a stronger broad defect-related visible emission band for the structure grown on the GaN template. Only a strong ZnO NBE UV emission was observed for the sample grown on the ZnO template. Quarter-wafer chemical lift-off (CLO) of the InGaN-based p-i-n structures from the sapphire substrate was achieved by temporary-bonding the GaN surface to rigid glass support with wax and then selectively dissolving the ZnO in 0.1M HCl. XRD studies revealed that the epitaxial nature and strong preferential c-axis orientation of the layers had been maintained after lift-off. This demonstration of CLO scale-up, without compromising the crystallographic integrity of the (In)GaN p-i-n structure opens up the perspective of transferring GaN based devices off of sapphire substrates industrially. reprint
 
147.  
Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD
Structural, Optical, Electrical and Morphological Study of Transparent p-NiO/n-ZnO Heterojunctions Grown by PLD
V. E. Sandana, D. J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M. R. Correia, T. Monteiro, R. McClintock, and M. Razeghi
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641O-- March 24, 2015
NiO/ZnO heterostructures were fabricated on FTO/glass and bulk hydrothermal ZnO substrates by pulsed laser deposition. X-Ray diffraction and Room Temperature (RT) Raman studies were consistent with the formation of (0002) oriented wurtzite ZnO and (111) oriented fcc NiO. RT optical transmission studies revealed bandgap energy values of ~3.70 eV and ~3.30 eV for NiO and ZnO, respectively and more than 80% transmission for the whole ZnO/NiO/FTO/glass stack over the majority of the visible spectrum. Lateral p-n heterojunction mesas (~6mm x 6mm) were fabricated using a shadow mask during PLD growth. n-n and p-p measurements showed that Ti/Au contacting gave an Ohmic reponse for the NiO, ZnO and FTO. Both heterojunctions had rectifying I/V characteristics. The junction on FTO/glass gave forward bias currents (243mA at +10V) that were over 5 orders of magnitude higher than those for the junction formed on bulk ZnO. At ~ 10-7 A (for 10V of reverse bias) the heterojunction leakage current was approximately two orders of magnitude lower on the bulk ZnO substrate than on FTO. Overall, the lateral p-NiO/n-ZnO/FTO/glass device proved far superior to that formed by growing p-NiO directly on the bulk n-ZnO substrate and gave a combination of electrical performance and visible wavelength transparency that could predispose it for use in various third generation transparent electronics applications. reprint
 
148.  
High brightness angled cavity quantum cascade lasers
High brightness angled cavity quantum cascade lasers
D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi
Applied Physics Letters 106, 091105-- March 6, 2015
A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm²·sr-1 is obtained, which marks the brightest QCL to date. reprint
 
149.  
Polarization-free GaN emitters in the ultraviolet and visible spectra via heterointegration on CMOS-compatible Si (100)
Polarization-free GaN emitters in the ultraviolet and visible spectra via heterointegration on CMOS-compatible Si (100)
C. Bayram, J. Ott, K. T. Shiu, C. W. Cheng, Y. Zhu, J. Kim, D. K. Sadana, M. Razeghi
Proc. SPIE 9370, Quantum Sensing and Nanophotonic Devices XII, 93702F -- February 8, 2015
This work presents a new type of polarization-free GaN emitter. The unique aspect of this work is that the ultraviolet and visible emission originates from the cubic phase GaN and the cubic phase InGaN/GaN multi-quantum-wells, respectively. Conventionally, GaN emitters (e.g. light emitting diodes, laser diodes) are wurtzite phase thus strong polarization fields exist across the structure contributing to the “droop” behavior – a phenomenon defined as “the reduction in emitter efficiency as injection current increases”. The elimination of piezoelectric fields in GaN-based emitters as proposed in this work provide the potential for achieving a 100% internal efficiency and might lead to droopfree light emitting diodes. In addition, this work demonstrates co-integration of GaN emitters on cheap and scalable CMOS-compatible Si (100) substrate, which yields possibility of realizing a GaN laser diode uniquely – via forming mirrors along the naturally occurring cubic phase GaN-Si(100) cleavage planes. reprint
 
150.  
High power frequency comb based on mid-infrared quantum cascade laser at λ ~9μm
High power frequency comb based on mid-infrared quantum cascade laser at λ ~9μm
Q. Y. Lu, M. Razeghi, S. Slivken, N. Bandyopadhyay, Y. Bai, W. J. Zhou, M. Chen, D. Heydari, A. Haddadi, R. McClintock, M. Amanti, and C. Sirtori
Appl. Phys. Lett. 106, 051105-- February 2, 2015
We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm−1 and a high power output of 180 mW for ∼176 comb modes. reprint
 

Page 6 of 32:  Prev << 1 2 3 4 5 6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  >> Next  (786 Items)